Любой организм выживает только в определенном диапазоне температур, к которому он адаптирован морфологически и . если температура ткани падает ниже точки замерзания, то обычно происходят необратимые структурные повреждения живых клеток, обусловленные образованием кристаллов льда. вместе с тем чрезмерное нагревание приводит к денатурации белков. между двумя этими экстремальными состояниями скорость ферментативных реакций, т. е. интенсивность обмена веществ, повышается вдвое с ростом температуры на каждые 10 °с. большинство организмов с различных адаптации в той или иной мере способно к терморегуляции, так что колебания внешней температуры внутри тела «сглаживаются» (гл. 19). в воде ее высокой теплоемкости эти колебания выражены слабее, поэтому водные местообитания в целом стабильнее по условиям, чем наземные. источник:
* Прямой круглый однородный конус имеет массу т и радиус основания R.
Масса каждого шара m = 1 кг.
Найти: а) момент инерции J\ системы относительно оси, проходящей через середину стержня перпендикулярно к нему; б) момент инерции J^ системы относительно той же оси, считая шары материальными точками, массы которых сосредоточены в их центрах; в) относительную ошибку 6 = (
Найти массу диска т, если известно, что диск вращается с угловым ускорением е — 100рад/с2.
Однородный стержень длиной I — 1 м и массой т = 0,5кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня.
Две гири с массами mj = 2кг и m-i — 1кг соединены нитью, перекинутой через блок массой m = 1 кг.
* Определить угловое ускорение блока радиусом R с моментом инерции J, через который перекинута нить с грузами массой mi и т2.
На барабан массой т = 9кг намотан шнур, к концу которого привязан груз массой mi =2 кг.
На барабан радиусом R = 0,5м намотан шнур, к которому привязан груз массой m = 10кг.
На барабан радиусом R — 20см, момент инерции которого ,7 = 0,1кг-м2, намотан шнур, к концу которого привязан груз массой m = 0,5 кг.
Блок массой m = 1кг укреплен на конце стола.
Гири 1 и 2 одинаковой массы mi = т^ = 1кг соединены нитью, перекинутой через блок.
Диск массой m = 2кг катится без скольжения по горизонтальной поверхности со скоростью v = 4 м/с.
Шар диаметром D = 6см и массой m = 0,25кг катится без скольжения по горизонтальной плоскости с частотой вращения п = 4 об/с.
Шар массой m = 1 кг, катящийся без скольжения, ударяется о стенку и отскакивает от нее.
Найти линейные ускорения центров масс шара, диска и обруча, скатывающихся без скольжения с наклонной плоскости.
Каково ускорение центра масс цилиндра?
* Тонкая однородная палочка длины I и массы т лежит симметрично на двух опорах, расстояние между которыми а.
* Обруч, вся масса которого сосредоточена в ободе, раскрутили до угловой скорости ш и поставили на шероховатую наклонную плоскость, составляющую угол а с горизонтом.
* Тонкое кольцо радиуса R и массы m раскрутили до угловой скорости WQ и поставили вертикально на горизонтальную плоскость.
* Горизонтальная платформа массой m = 100кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой HI — 10 об/мин.
Человек массой то = 60кг стоит при этом на краю платформы.
Считать платформу однородным диском, а человека — точечной массой.
* Горизонтальная платформа массой т = 80кг и радиусом R = 1м вращается с частотой HI = 20 об/мин.
Найти массу второго груза, если масса первого равна mi.
Масса палочки т.
31 такой же массы с сечением в виде равностороннего треугольника (рис.
* На наклонной плоскости с углом наклона а = 30° лежат два груза с массами т\ = 4кг и т?
*' Найти скорость v течения углекислого газа по трубе, если известно, что за время t = 30 мин через поперечное сечение трубы протекает масса газа m = 0,51 кг.
Найти массу колокола, если его внутренний радиус равен R, а плотность жидкости р.
Массы некоторых изотопов.
Уравнение состояния идеального газа pV = ^ КГ, где р — давление газа, V — его объем,
* Прямой круглый однородный конус имеет массу т и радиус основания R.
Масса каждого шара m = 1 кг.
Найти: а) момент инерции J\ системы относительно оси, проходящей через середину стержня перпендикулярно к нему; б) момент инерции J^ системы относительно той же оси, считая шары материальными точками, массы которых сосредоточены в их центрах; в) относительную ошибку 6 = (
Найти массу диска т, если известно, что диск вращается с угловым ускорением е — 100рад/с2.
Однородный стержень длиной I — 1 м и массой т = 0,5кг вращается в вертикальной плоскости вокруг горизонтальной оси, проходящей через середину стержня.
Две гири с массами mj = 2кг и m-i — 1кг соединены нитью, перекинутой через блок массой m = 1 кг.
* Определить угловое ускорение блока радиусом R с моментом инерции J, через который перекинута нить с грузами массой mi и т2.
На барабан массой т = 9кг намотан шнур, к концу которого привязан груз массой mi =2 кг.
На барабан радиусом R = 0,5м намотан шнур, к которому привязан груз массой m = 10кг.
На барабан радиусом R — 20см, момент инерции которого ,7 = 0,1кг-м2, намотан шнур, к концу которого привязан груз массой m = 0,5 кг.
Блок массой m = 1кг укреплен на конце стола.
Гири 1 и 2 одинаковой массы mi = т^ = 1кг соединены нитью, перекинутой через блок.
Диск массой m = 2кг катится без скольжения по горизонтальной поверхности со скоростью v = 4 м/с.
Шар диаметром D = 6см и массой m = 0,25кг катится без скольжения по горизонтальной плоскости с частотой вращения п = 4 об/с.
Шар массой m = 1 кг, катящийся без скольжения, ударяется о стенку и отскакивает от нее.
Найти линейные ускорения центров масс шара, диска и обруча, скатывающихся без скольжения с наклонной плоскости.
Каково ускорение центра масс цилиндра?
* Тонкая однородная палочка длины I и массы т лежит симметрично на двух опорах, расстояние между которыми а.
* Обруч, вся масса которого сосредоточена в ободе, раскрутили до угловой скорости ш и поставили на шероховатую наклонную плоскость, составляющую угол а с горизонтом.
* Тонкое кольцо радиуса R и массы m раскрутили до угловой скорости WQ и поставили вертикально на горизонтальную плоскость.
* Горизонтальная платформа массой m = 100кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой HI — 10 об/мин.
Человек массой то = 60кг стоит при этом на краю платформы.
Считать платформу однородным диском, а человека — точечной массой.
* Горизонтальная платформа массой т = 80кг и радиусом R = 1м вращается с частотой HI = 20 об/мин.
Найти массу второго груза, если масса первого равна mi.
Масса палочки т.
31 такой же массы с сечением в виде равностороннего треугольника (рис.
* На наклонной плоскости с углом наклона а = 30° лежат два груза с массами т\ = 4кг и т?
*' Найти скорость v течения углекислого газа по трубе, если известно, что за время t = 30 мин через поперечное сечение трубы протекает масса газа m = 0,51 кг.
Найти массу колокола, если его внутренний радиус равен R, а плотность жидкости р.
Массы некоторых изотопов.
Уравнение состояния идеального газа pV = ^ КГ, где р — давление газа, V — его объем,