Если считать, что плотность солёной воды больше, чем пресной, то думаю, что уровень повысится.
Если бы кубик был из солёной воды, то после таяния уровень не изменился бы, потому что получившийся объём растаявшей солёной воды, умноженный на плотность солёной воды равен массе куска солёного льда, равен объёму вытесняемой солёной воды пока кубик ещё плавает.
Но наш кубик из пресной воды, следовательно при той же массе (поэтому давая такой же подъём уровня в сосуде, как и солёный кубик) пресный растает в бОльший объём воды, чем растаял бы солёный, и это повысит уровень.
Может ошибаюсь, но думаю что так. Нужно будет попробовать при случае.
Средняя арифметическая скорость не учитывает весовые коэффициенты, связанные с тем фактом, что разные скорости тела могли продолжаться разное время.
Эти две скорости совпадают только тогда, когда все скорости были у тела одинаковое время.
.
.
Например, если один час машина шла со скоростью 40 км/ч, а другой час со скоростью 60 км/ч, то обе скорости равны 50 км/ч.
Но если скорость 40 км/ч была полчаса, а скорость 60 км/ч была полтора часа, то средняя скорость будет уже 55 км/ч, а средняя арифметическая по прежнему будет 50 км/ч.
Средняя арифметическая скорость в этом примере считается простым сложением всех скоростей и делением на число скоростей:
(40+60)/2=50
Это по другому можно записать так:
(1/2)*40 + (1/2)*60 = 50
Здесь коэффициенты (1/2) это и есть весовые коэффициенты. Они для средней арифметической скорости всегда одинаковы перед всеми скоростями.
А средняя скорость учитывает время, в течение которого была эта скорость
(1/4)*40 + (3/4)*60 = 55
Здесь коэффициент (1/4) перед скоростью 40 показывает, сто скорость 40 была всего только четверть времени (полчаса), а коэффициент (3/4) перед скоростью 60 показывает, что скорость 60 была три четверти всего времени в пути (полтора часа).
Если бы кубик был из солёной воды, то после таяния уровень не изменился бы, потому что получившийся объём растаявшей солёной воды, умноженный на плотность солёной воды равен массе куска солёного льда, равен объёму вытесняемой солёной воды пока кубик ещё плавает.
Но наш кубик из пресной воды, следовательно при той же массе (поэтому давая такой же подъём уровня в сосуде, как и солёный кубик) пресный растает в бОльший объём воды, чем растаял бы солёный, и это повысит уровень.
Может ошибаюсь, но думаю что так. Нужно будет попробовать при случае.
У них разные формулы для расчета.
Средняя арифметическая скорость не учитывает весовые коэффициенты, связанные с тем фактом, что разные скорости тела могли продолжаться разное время.
Эти две скорости совпадают только тогда, когда все скорости были у тела одинаковое время.
.
.
Например, если один час машина шла со скоростью 40 км/ч, а другой час со скоростью 60 км/ч, то обе скорости равны 50 км/ч.
Но если скорость 40 км/ч была полчаса, а скорость 60 км/ч была полтора часа, то средняя скорость будет уже 55 км/ч, а средняя арифметическая по прежнему будет 50 км/ч.
Средняя арифметическая скорость в этом примере считается простым сложением всех скоростей и делением на число скоростей:
(40+60)/2=50
Это по другому можно записать так:
(1/2)*40 + (1/2)*60 = 50
Здесь коэффициенты (1/2) это и есть весовые коэффициенты. Они для средней арифметической скорости всегда одинаковы перед всеми скоростями.
А средняя скорость учитывает время, в течение которого была эта скорость
(1/4)*40 + (3/4)*60 = 55
Здесь коэффициент (1/4) перед скоростью 40 показывает, сто скорость 40 была всего только четверть времени (полчаса), а коэффициент (3/4) перед скоростью 60 показывает, что скорость 60 была три четверти всего времени в пути (полтора часа).