Четверг, 5 сен 2019
1. перевести 144 км/ч в м/с; 25 м/с в км/ч 2. найдите объем бетонного тела, если масса этого тела 15 кг. плотность бетона 2300 кг/м3. 3. пружина, длина которой 0,07 м, растянули до 0,15 м. определите коэффициент жесткости этой пружины, если сила была 10 н.
Объяснение:
В работе рассматривается движение абсолютно твердого тела.
Поступательное движение – это такое движение, при котором прямая, соединяю-
щая две любые точки тела, остается параллельной самой себе.
Основной закон динамики поступательного движения – второй закон Ньютона:
dp F
dt
=
,
где F
– равнодействующая всех сил, действующих на тело, dp
dt
– производная импульса
по времени.
Для тел, скорость движения которых v
значительно меньше скорости света,
p mv
=
и
dv
F m ma
dt
= =
, (1)
где m – масса тела, a
– его ускорение ([1] § 6).
Вращательным движением называется такое движение, при котором все точки те-
ла движутся по окружностям, центры которых лежат на одной и той же прямой, называе-
мой осью вращения. Основные характеристики кинематики вращательного движения:
угол поворота ϕ , угловая скорость ω , угловое ускорение ε . Эти величины связаны меж-
ду собой и с характеристиками поступательного движения ([1] §§1-4).
При изучении динамики вращения твердого тела пользуются понятиями момента
силы M
, момента импульса L
и момента инерции I .
Моментом силы M
относительно точки О называется векторное произведение
радиус-вектора r и силы F
:
M rF
=
,
1) Гармони́ческие колеба́ния — колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону.
Графики функций f(x) = sin(x) (красная линия) и g(x) = cos(x) (зелёная линия) в декартовой системе координат. По оси абсцисс отложены значения полной фазы.
2)Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.
3) Собственная частота , также известная как собственная частота , - это частота, на которой система имеет тенденцию колебаться в отсутствие какой-либо движущей или демпфирующей силы. Схема движения системы, колеблющейся с собственной частотой, называется нормальным режимом (если все части системы движутся синусоидально с той же самой частотой). Если колебательная система приводится в движение внешней силой с частотой, на которой амплитуда ее движения является наибольшей (близкой к собственной частоте системы), эта частота называется резонансной частотой .
4) Негармонические колебания осуществляются в природе в системах, содержащих нелинейные элементы, которые преобразуют энергию источника в энергию колебаний.
Негармонические колебания, получающиеся в результате наложения двух одинаково направленных гармонических колебаний с близкими частотами ( to2 - ai K ( o), называются биениями.
Негармонические колебания выходят за рамки настоящей работы. Представляется, однако, целесообразным дать читателю хотя бы элементарные понятия и об этом вопросе.
5)Спектр колебаний (вибрации) — - совокупность соответствующих гармоническим составляющим значений величины, характеризующей колебания (вибрацию), в которой указанные значения располагаются в порядке возрастания частот гармонических составляющих.
6) Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки на конце невесомой нерастяжимой нити или лёгкого стержня и находящуюся в однородном поле сил тяготения. Другой конец нити (стержня) обычно неподвижен. Период малых собственных колебаний маятника длины L, подвешенного в поле тяжести, равен
Математический маятник. Чёрный пунктир — положения равновесия,
θ
\theta — угол отклонения от вертикали в некоторый момент
T
0
=
2
π
L
g
и не зависит, в первом приближении, от амплитуды колебаний и массы маятника. Здесь g — ускорение свободного падения.
Математический маятник служит простейшей моделью физического тела, совершающего колебания: она не учитывает распределение массы. Однако реальный физический маятник при малых амплитудах колеблется так же, как математический с приведённой длиной.