Давление на снег вычисляется по формуле P = F/S где, F — сила тяжести S — общая площадьОбщая площадь = 2 * Площадь каждого ботинка = 2 * 30см * 10см = 600см^2 = 0.06 м^2 F = 70 кг * 10 Н/кг = 700Н P=700Н/0,06м^2 = 11.6 кПаЕсли увеличить длину лыж до 210, тогда общая площадь будет равна = 2*210*10 = 0,42 м^2 P = 700Н / 0,42 м^2 =0.16 кПа т.е. уменьшиться в 7 разВопросы в s=0.1*0.3=0.03м^2 силатяжестичеловека F=m*g=70*10=700 Н давлениеP=m*g/2*s(двойка потому что 2 ноги) = 700/2*0.03=11.6кПА налыжахS=2.1*0.1=0.21м^2 p=700/2*0.21=1.6кПАв7.25 раз
1) По закону сохранения импульса в любой момент времени центр стержня остается на той же вертикали, на которой был стержень в начальный момент времени. Средняя точка стержня имеет скорость, направленную вниз.
2) Нижняя точка стержня находится в постоянном соприкосновении с полом и движется горизонтально вправо.
Эти две скорости должны быть перпендикулярны радиусам, проведенным из мгновенного центра вращения в точки центра и нижнего конца стержня соответственно. Восстанавливая перпендикуляры, мы понимаем, центр вращения будет лежать НАД правым нижним концом стержня НА ВЫСОТЕ центра масс стержня.
Пусть правый нижний конец стержня сместился на x, тогда центр стержня по теореме Пифагора (гипотенуза равна L/2) находится на высоте
Собственно, это и есть уравнение траектории стержня. Его можно было бы оставить и в таком виде
И мы понимаем, что это уравнение окружности с центром в точке, где сначала был нижний конец стержня и радиусом L/2.
P = F/S
где,
F — сила тяжести
S — общая площадьОбщая площадь = 2 * Площадь каждого ботинка = 2 * 30см * 10см = 600см^2 = 0.06 м^2
F = 70 кг * 10 Н/кг = 700Н
P=700Н/0,06м^2 = 11.6 кПаЕсли увеличить длину лыж до 210, тогда общая площадь будет равна = 2*210*10 = 0,42 м^2
P = 700Н / 0,42 м^2 =0.16 кПа
т.е. уменьшиться в 7 разВопросы в s=0.1*0.3=0.03м^2
силатяжестичеловека F=m*g=70*10=700 Н
давлениеP=m*g/2*s(двойка потому что 2 ноги) = 700/2*0.03=11.6кПА
налыжахS=2.1*0.1=0.21м^2
p=700/2*0.21=1.6кПАв7.25 раз
1) По закону сохранения импульса в любой момент времени центр стержня остается на той же вертикали, на которой был стержень в начальный момент времени. Средняя точка стержня имеет скорость, направленную вниз.
2) Нижняя точка стержня находится в постоянном соприкосновении с полом и движется горизонтально вправо.
Эти две скорости должны быть перпендикулярны радиусам, проведенным из мгновенного центра вращения в точки центра и нижнего конца стержня соответственно. Восстанавливая перпендикуляры, мы понимаем, центр вращения будет лежать НАД правым нижним концом стержня НА ВЫСОТЕ центра масс стержня.
Пусть правый нижний конец стержня сместился на x, тогда центр стержня по теореме Пифагора (гипотенуза равна L/2) находится на высоте
Собственно, это и есть уравнение траектории стержня. Его можно было бы оставить и в таком виде
И мы понимаем, что это уравнение окружности с центром в точке, где сначала был нижний конец стержня и радиусом L/2.
ответ - по дуге окружности