До T₁ движение по этой координате равномерное. При постоянной скорости, численно равной тангенсу угла, показанного на графике. T> t₁ торможение активировано. Скорость уменьшается с постоянным ускорением, потому что график представляет собой параболу. При T₂ скорость равна нулю. При T> t₂ направление скорости меняется на начальное. График скорости представляет собой прямую, параллельную оси времени, равную tgα. При рефракции T> t T график скорости представляет собой прямую линию, которая пересекающую ось абсцисс в точке t2" (где скорость равна 0). В точке Т значение скорости равно начальному значению, полученному обратным знаком.
До T₁ движение по этой координате равномерное. При постоянной скорости, численно равной тангенсу угла, показанного на графике. T> t₁ торможение активировано. Скорость уменьшается с постоянным ускорением, потому что график представляет собой параболу. При T₂ скорость равна нулю. При T> t₂ направление скорости меняется на начальное. График скорости представляет собой прямую, параллельную оси времени, равную tgα. При рефракции T> t T график скорости представляет собой прямую линию, которая пересекающую ось абсцисс в точке t2" (где скорость равна 0). В точке Т значение скорости равно начальному значению, полученному обратным знаком.
ответ: 41 м
Объяснение:
Дано:
h = 5 м
α = 30°
μ = 0,1
s - ?
Согласно ЗСЭ при движении санок по наклонной плоскости
mgh = ( mv² )/2 + Aтр.1
Где Aтр.1 - работа сил трения на наклонной плоскости
v - скорость тела у "подножия" наклонной плоскости
Поэтому
Атр.1 = Fтр.1L
Где L - длина наклонной плоскости
Атр.1 = μN1L
Т.к. N1 = mgcosα ( Докажите самостоятельно )
Тогда
Атр.1 = μmgcosαL
Возвращаюсь к начальному уравнению
Получим что
mgh = ( mv² )/2 + μmgcosαL (1)
Теперь перейдем к движению тела на горизонтальной плоскости
Согласно ЗСЭ
( mv² )/2 = Aтр.
( mv² )/2 = Fтр.s
Где Fтр. - сила трения на горизонтальном участке движения
Соответственно Fтр. = μmg ( Докажите самостоятельно )
Тогда
( mv² )/2 = μmgs
Подставим данное выражение в уравнение (1)
mgh = μmgs + μmgcosαL
Упростим
h = μ( s + cosαL )
sinα = h/L
Отсюда
L = h/sinα
Тогда
h = μ( s + ( hcosα )/sinα )
h = μ( s + hctgα )
s + hctgα = h/μ
s = h/μ - hctgα
s = h( 1/μ - ctgα )
s = 5( 1/0,1 - 1,73 ) ≈ 41 м