Равнодействующая есть геометрическая сумма сил, действующих на тело. У нас все силы коллинеарны между собой, стало быть, чтобы посчитать проекцию равнодействующей на эту прямую, достаточно сложить модули всех сил с учетом знака. Всего у нас 8 вариантов расстановки знаков (по числу различных упорядоченных троек из "плюсов" и "минусов") и, соответственно, 4 варианта модуля результирующей, т.к. для всякой тройки из только что описанного кортежа можно сделать "противоположную" заменой каждого знака на противоположный, при этом проекция результирующей умножается на . Таким образом, мы избавляемся от половины вариантов и, кроме того, можем сразу рассматривать модуль силы вместо рассмотрения ее проекции.
Этим вариантам соответствуют следующие проекции: (других проекций нет по только что доказанному) и модули: Отсюда ответ: в.
2 Период колебаний T можно определять по формуле: T=tN(1) В этой формуле t — время колебаний, N — число полных колебаний, которое было совершено за время t. Также период колебаний пружинного маятника легко найти по формуле: T=2πmk−−−√(2) Здесь k — жесткость пружины, m — масса груза. Приравняв (1) и (2), мы имеем равенство: tN=2πmk−−−√ Возведем обе части этого уравнения в квадрат: t2N2=4π2mk Откуда масса колеблющегося груза m равна: m=kt24π2N2 Посчитаем численный ответ: m=250⋅8024⋅3,142⋅1002=4,06кг=4060г
Этим вариантам соответствуют следующие проекции:
(других проекций нет по только что доказанному)
и модули:
Отсюда ответ: в.
Объяснение:
1 на фотке
2 Период колебаний T можно определять по формуле: T=tN(1) В этой формуле t — время колебаний, N — число полных колебаний, которое было совершено за время t. Также период колебаний пружинного маятника легко найти по формуле: T=2πmk−−−√(2) Здесь k — жесткость пружины, m — масса груза. Приравняв (1) и (2), мы имеем равенство: tN=2πmk−−−√ Возведем обе части этого уравнения в квадрат: t2N2=4π2mk Откуда масса колеблющегося груза m равна: m=kt24π2N2 Посчитаем численный ответ: m=250⋅8024⋅3,142⋅1002=4,06кг=4060г