Запишем 2 закон Ньютона в векторной форме для вытаскивания ящика по наклонной плоскости: m * a = Fт + m * g + N + Fтр, где Fт – сила, с которой тянут тело вверх, направленная вдоль наклонной плоскости, m * g - сила тяжести, N - сила реакции поверхности наклонной плоскости, Fтр - сила трения.
Так как по условию задачи его тянут равномерно а = 0 м/с2, то формула 2 закона Ньютона примет вид: : 0 = Fт + m * g + N + Fтр. Действие всех сил на тело скомпенсированы.
Запишем 2 закон Ньютона для проекций на координатные оси:
ОХ: 0 = Fт - Fтр - m * g * sinα.
ОУ: 0 = - m * g * cosα + N.
Fт = Fтр + m * g * sinα.
N = m * g * cosα.
Силу трения ящика о наклонную плоскость Fтр выразим формулой: Fтр = μ * N = μ * m * g * cosα.
Сила Fт, с которой тянут ящик, будет определяться формулой: Fт = μ * m * g * cosα + m * g * sinα = m * g (μ * cosα + sinα).
Fт = 30 кг * 10 м/с2 * ( 0,3 * 0,866 + 0,5) = 228 Н.
ответ: для равномерного втаскивания ящика по наклонной плоскости необходимо приложить силу Fт = 228 Н.
Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.
m = 30 кг.
g = 10 м/с2.
а = 0 м/с2.
∠α = 30°.
μ = 0,5.
Fт - ?
Запишем 2 закон Ньютона в векторной форме для вытаскивания ящика по наклонной плоскости: m * a = Fт + m * g + N + Fтр, где Fт – сила, с которой тянут тело вверх, направленная вдоль наклонной плоскости, m * g - сила тяжести, N - сила реакции поверхности наклонной плоскости, Fтр - сила трения.
Так как по условию задачи его тянут равномерно а = 0 м/с2, то формула 2 закона Ньютона примет вид: : 0 = Fт + m * g + N + Fтр. Действие всех сил на тело скомпенсированы.
Запишем 2 закон Ньютона для проекций на координатные оси:
ОХ: 0 = Fт - Fтр - m * g * sinα.
ОУ: 0 = - m * g * cosα + N.
Fт = Fтр + m * g * sinα.
N = m * g * cosα.
Силу трения ящика о наклонную плоскость Fтр выразим формулой: Fтр = μ * N = μ * m * g * cosα.
Сила Fт, с которой тянут ящик, будет определяться формулой: Fт = μ * m * g * cosα + m * g * sinα = m * g (μ * cosα + sinα).
Fт = 30 кг * 10 м/с2 * ( 0,3 * 0,866 + 0,5) = 228 Н.
ответ: для равномерного втаскивания ящика по наклонной плоскости необходимо приложить силу Fт = 228 Н.
Оба тела движутся равномерно.
х(t)=xo + Vx*t
x1=0 + 11,5 * t
x2=800 - 1 * t
Первое тело находится в начале отсчета. хо=0; его скорость 11,5 м/с вдоль оси координат.
Второе тело находится в точке с координатой 800 м и движется со скоростью (-1) м/с. Значит против оси координат, навстречу первому.
В начале наблюдения за телами (t=0) между телами было 800 м, но каждую секунду это расстояние уменьшается на (V1x - V2x)=
11,5 - (-1)=12,5 м/с
Тогда расстояние между ними S(t)=800 - 12,5*t
Это зависимость расстояния от времени. Цель задачи составить эту функцию. Теперь можно узнать расстояние между телами в любое время. И до встречи и после!
Через 10 с S(10)=800 - 12,5*10=800 - 125=675 м - это ответ.
Через минуту S(60)=800 - 12,5 * 60=50 м. Скоро встретятся. 50 м осталось.
Через 70 с S(70)=800 - 12,5 * 70=-75 м. Значит тела уже встретились и начинают удалятся друг от друга.