В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
AnnPogodina1
AnnPogodina1
17.03.2021 15:08 •  Физика

Что означает опыт Галилея ( с тележкой) . Почему этот опыт называют мыслительным и какой в нем смысл. С объяснениям

Показать ответ
Ответ:
milka2636
milka2636
10.02.2023 21:14
Поднимаясь по желобу на высоту h шарик приобретает потенциальную энергию
W = mgh.

При малых смещениях можно считать, что амплитуда колебаний по дуге желоба l равна проекции этой дуги на горизонталь X0. Из прямоугольного треугольника, образованного радиусом желоба R, амплитуды горизонтального смещения X0  и проекции крайнего положения шарика на вертикаль (R-h) следует:
X0^2 + (R-h)^2 = R^2
Отсюда получим: X0^2 = 2*R*h - h^2
Учитывая, что при малых колебаниях h^2 << 2*R*h
X0^2 = 2*R*h

Таким образом, получаем выражение для h через амплитуду X0 при малых отклонениях от положения равновесия:
h = X0^2/2R

Потенциальная энергия, максимальная при крайнем положении шарика обретает вид:
W = m*g*X0^2/2R

Теперь получим значение максимальной кинетической энергии шарика (при прохождении положения равновесия). Она равна:
T = m*V0^2/2 + I*Omega^2/2
поскольку, коль шарик катится по жёлобу без проскалзывания, мы должны, помимо кин энергии поступательного движения шарика массы m, учитывать ещё и энергию вращения шарика с моментом инерции I и угловой скоростью вращения шарика вокруг его собственной оси Omega.

При этом максимальная линейная скорость шарика
V0 = Omega*r, где r = радиус шарика =>
Omega = V0/r

T = m*V0^2/2 + I*(V0/r)^2/2

Если шарик совершает гармонические колебания по закону
x(t) = X0*Sin(omega*t) то его скорость должна меняться по закону
v(t) = x'(t) = omega*X0*Cos(omega*t)

Таким образом, максимальная линейная скорость шарика (амплитуда скорости) равна
V0 = omega*X0, где omega - циклическая частота колебаний шарика.

Выражение для максимальной кинетической энергии шарика принимает вид:
T = m*(omega*X0)^2/2 + I*(omega*X0)^2/(2r^2).

Поскольку момент инерции шарика радиуса r и массы m равен
I = (2/5)mr^2, то

T = m*(omega*X0)^2/2 + (2/5)mr^2*(omega*X0)^2/(2r^2) = (7/10)m*(omega*X0)^2

В колебательной системе максимальное значение потенциальной энергии W равно максимальной величине кинетической энергии T.

(7/10)m*(omega*X0)^2 = m*g*X0^2/2R
отсюда, сокращая в обеих частях равенства m и X0 получаем:

(7/5)*omega^2 = g/R

и окончательно
omega^2 = (5/7)*(g/R)
и
omega = sqrt(5g/7R).

Частота такого "маятника" niu = omega/2Pi
niu = sqrt(5g/7R)/2Pi

Период T = 1/niu = 2Pi*sqrt(7R/5g)
0,0(0 оценок)
Ответ:
петрович16
петрович16
13.09.2020 14:17

Объяснение:

W = Iω2/2 (энергия равна моменту инерции вращающейся системы помноженного на половину квадрата угловой скорости)

Когда человек сближает гири, у него, на самом деле, сгибаются ещё и руки в локтях. Поэтому момент инерции человека тоже меняется, но этим можно пренебречь.

W1 = I1 общ.ω12/2 // Кинетическая энергия вращения до сближения гирь.

W2 = I2 общ.ω22/2 // Кинетическая энергия вращения после сближения гирь.

I1 общ. = 2I1 + Iчеловека // I1 - момент инерции одной гири до сближенния.

I2 общ. = 2I2 + Iчеловека // I1 - момент инерции одной гири после сближенния.

ω1 = 2πν1

ω2 = 2πν2

ΔW = W2 - W1 = I2 общ.ω22/2 - I1 общ.ω12/2 = (2I2 + Iчеловека)2π2ν22 - (2I1 + Iчеловека)2π2ν12

И что теперь?! Мы знаем всё, кроме момента инерции человека. Как же быть?! А очень просто. В описанном действии сохраняется момент количества движения. Слыхали о таком? Так вот в соответсвии с законом о сохранении момента количесва движения можно записать:

I1&omega1 = I2&omega2 // Здесь слева и справа стоят выражения называемые моментом количества движения (или момент импульса, т.к. это одно и тоже: кол-во движения ~ импульс)

2π(2I1 + Iчеловека)&nu1 = 2π(2I2 + Iчеловека)&nu2

Iчеловека(&nu2-&nu1) = 2I1ν1 - 2I2ν2

Iчеловека = (2I1ν1 - 2I2ν2)/(&nu2-&nu1)

Начнём численные рассчёты.

Можно было бы посчитать в общем виде, но мы не на экзамене.

I1 = mr12 = md12/4 = 2·1.52/4 = 1.125 кг·м2

I2 = mr22 = md22/4 = 2·0.82/4 = 0.32 кг·м2

Iчеловека = (2·1.125·1 - 2·0.32·1.5)/(1.5 - 1) = 2.58 кг·м2 (Я сейчас подумал и решил сообщить о поправке. Это не момент инерции человека, а момент инерции всей вращающейся системы исключая гири, т.е. человека, скамейки, содержимого карманов и т.п.)

Досчитываем до конца.

ΔW = 2π2(ν22(Iчеловека + 2I2) - ν12(Iчеловека + 2I1)) = 2·3,142·(1.52(2.58 + 2·1.125) - 1·(2.58 + 2·0.32)) = 150.8 Дж.

ответ: На 150.8 джоулей.

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота