В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kamil281102
kamil281102
06.01.2021 11:58 •  Физика

Cо два водоёма глубиной 80 м поднимается шарообразный пузырёк воздуха. на какой глубине радиус этого пузырька увеличится в 2 раза? атмосферное давление 10^5 па. температуру считать постоянной

Показать ответ
Ответ:
диманназаров
диманназаров
18.01.2024 18:58
Добрый день!

Чтобы решить эту задачу, нам необходимо использовать закон Архимеда. Согласно этому закону, на тело, погруженное в жидкость, действует поддерживающая сила, равная весу вытесненной жидкости.

Первым шагом, нам необходимо определить величину увеличения радиуса пузырька воздуха в два раза. Для этого, воспользуемся формулой для объема шара:

V = (4/3) * π * r^3,

где V - объем пузырька, а r - его радиус.

Так как величина увеличивается в два раза, можем записать:

2 * V = (4/3) * π * (2r)^3.

Затем, выразим r из этого уравнения:

r = ∛(2 * V * (3/4) / π).

Теперь, нам необходимо использовать закон Архимеда для определения глубины, на которой происходит увеличение радиуса пузырька.

Согласно закону Архимеда, на пузырек действует поддерживающая сила:

F_А = m * g,

где F_А - поддерживающая сила, m - масса вытесненной воздухом жидкости, а g - ускорение свободного падения.

Рассмотрим условие задачи: пузырек поднимается на 80 м. На какой глубине его радиус увеличится в 2 раза? Пузырек будет подниматься только до тех пор, пока его плотность будет меньше плотности жидкости, в данном случае, воды.

Можем записать условие плотности:

ρ_пузырька > ρ_воды,

где ρ_пузырька - плотность пузырька воздуха, ρ_воды - плотность воды.

Запишем формулы для плотности пузырька и плотности жидкости:

ρ_пузырька = m_пузырька / V_пузырька,

ρ_воды = m_воды / V_воды,

где m_пузырька - масса пузырька воздуха, V_пузырька - объем пузырька воздуха, m_воды - масса вытесненной жидкости, V_воды - объем вытесненной жидкости.

Так как значения массы и объема выражены через плотность, можем записать:

ρ_пузырька = m_пузырька / V_пузырька,

ρ_воды = m_воды / V_воды.

Теперь сравним неравенство для плотностей:

m_пузырька / V_пузырька > m_воды / V_воды.

Учтем, что пузырек будет находиться в равновесии, а значит, его вес будет равен поддерживающей силе:

m_пузырька * g = m_воды * g.

Теперь можем выразить массу пузырька через плотность, учитывая, что его объем связан с радиусом:

m_пузырька = ρ_пузырька * V_пузырька.

Аналогично, для вытесненной жидкости записываем:

m_воды = ρ_воды * V_воды.

Теперь, подставим полученные выражения для массы пузырька и вытесненной жидкости в уравнение равновесия:

ρ_пузырька * V_пузырька * g = ρ_воды * V_воды * g.

Воспользуемся полученными ранее выражениями для объемов пузырька и вытесненной жидкости:

ρ_пузырька * (4/3) * π * r^3 * g = ρ_воды * V_воды * g.

Так как у нас задан конкретный объем пузырька, то можем записать:

V_воды = (4/3) * π * R^3,

где R - радиус вытесненной жидкости.

Аналогичные вычисления можем провести и для пузырька:

V_пузырька = (4/3) * π * r^3.

Теперь, подставим эти выражения в наше уравнение:

ρ_пузырька * (4/3) * π * r^3 * g = ρ_воды * (4/3) * π * R^3 * g.

Сокращаем общие множители:

ρ_пузырька * r^3 = ρ_воды * R^3.

Теперь можем подставить выражение для радиуса пузырька, которое мы получили ранее:

ρ_пузырька * (∛(2 * V * (3/4) / π))^3 = ρ_воды * R^3.

Теперь, определим плотности: пузырька воздуха и воды, используя данные из условия задачи. Расчет плотности можно выполнить по формуле:

ρ = p / (R * T),

где ρ - плотность, p - давление, R - универсальная газовая постоянная, T - абсолютная температура.

В нашем случае дано атмосферное давление (p = 10^5 Па) и температура считается постоянной. Значение универсальной газовой постоянной составляет R = 8,31 Дж/(моль·К).

Теперь, используя формулу плотности, можем записать:

ρ_пузырька = p / (R * T),

ρ_воды = p / (R * T).

Мы можем сократить давление в формулах для плотностей:

ρ_пузырька = 1 / (R * T),

ρ_воды = 1 / (R * T).

Теперь, подставим полученные выражения в наше уравнение:

(1 / (R * T)) * (∛(2 * V * (3/4) / π))^3 = (1 / (R * T)) * R^3.

Избавимся от общих множителей:

(∛(2 * V * (3/4) / π))^3 = R^3.

Теперь, воспользуемся формулой для расчета давления внутри пузырька:

p_пузырька = p + ρ_пузырька * g * h,

где p_пузырька - давление внутри пузырька, p - атмосферное давление, ρ_пузырька - плотность пузырька, g - ускорение свободного падения, h - глубина.

Приравняем давление внутри пузырька и атмосферное давление:

p_пузырька = p.

Теперь, можем записать:

p + ρ_пузырька * g * h = p,

ρ_пузырька * g * h = 0.

Так как плотность и ускорение свободного падения положительны, а глубина h должна быть положительной, то получается, что левая часть уравнения равна нулю только при h = 0. Что значит, что радиус пузырька увеличивается до тех пор, пока он не выйдет на поверхность.
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота