В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
жека569
жека569
14.02.2021 05:36 •  Физика

Дії яких тіл на стілець компенсуються коли стілець стоїть на пидлозі?

Показать ответ
Ответ:
victoriyasergi
victoriyasergi
16.09.2020 16:09
Фа́за колеба́ний полная — аргумент периодической функции, описывающейколебательный или волновой процесс.

Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).

Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению

Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений

Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида

для волны в пространстве любой размерности (например, в трехмерном пространстве)

Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полнаячасто опускают.

Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвигеаргумента (то есть фазы) на  то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса.

То есть, для колебательного процесса (см. выше) фаза (полная)
для волны в одномерном пространстве
для волны в трехмерном пространстве или пространстве любой другой размерности:

,

где  — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время;  — начальная фаза (то есть фаза при t = 0); k— волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например,декартовых).

В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:

1 цикл = 2 радиан = 360 градусов.

В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.

Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координатr, в принципе — произвольная функция
0,0(0 оценок)
Ответ:
Lialimur
Lialimur
25.02.2023 00:49
Из формулы потенциальной энергии видно, что нулевой уровень её будет только в одной точке с координатами (0;0;0). чем дальше частица от этой точки, тем выше её потенциальная энергия. ещё одно замечание связано с тем, что работа силы поля равна разности потенциальных энергий в конце и начале пути. теперь можно подставить значения координат точек и посчитать потенциальную энергию двух этих положений U1=18; U2=18; => работа на данном пути равна нулю. это полно представить так, что вокруг точки (0;0;0) есть области с одинаковыми уровнями энергии, если бы в формуле энергии небыло бы двойки перед х^2 то эта область имела бы форму сферы, а так она будет иметь такую каплевидную фору симметричную относительно оси Ох. эта область как раз будет характеризоваться тем, что работа потенциальной силы в этой области будет равна нулю
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота