Объяснение:
Математический маятник
Гармонические колебания
A - амплитуда колебаний
v - максимальная скорость
L - ? - длина маятника
Гармонические колебания определяются уравнением
х = А · sin (ωt)
Здесь ω - циклическая частота колебаний
Изменение скорости во времени
v = x' = Aω · cos (ωt)
Здесь максимальная скорость
v = A · ω
откуда
Период колебаний равен
или
Известно, что период колебаний математического маятника определяется по формуле
Здесь g - ускорение свободного падения
Сопоставляя формулы (1) и (2), получим
откуда длина маятника
Объяснение:
Математический маятник
Гармонические колебания
A - амплитуда колебаний
v - максимальная скорость
L - ? - длина маятника
Гармонические колебания определяются уравнением
х = А · sin (ωt)
Здесь ω - циклическая частота колебаний
Изменение скорости во времени
v = x' = Aω · cos (ωt)
Здесь максимальная скорость
v = A · ω
откуда
Период колебаний равен
или
Известно, что период колебаний математического маятника определяется по формуле
Здесь g - ускорение свободного падения
Сопоставляя формулы (1) и (2), получим
откуда длина маятника
Обратите чистые периодические десятичные дроби в обыкновенные: 0,(2); 1,(3); 3,(54); 21,(23); 0,(673); 7,(256); 16,(002); 0,(0001); 5,(01).
Обратите смешанные периодические десятичные дроби в обыкновенные 0,1(3); 1,2(5); 7,0(4); 2,23(7); 10,1(45); 0,25(83); 16,5(02); 0,000(1).
Обратите периодические десятичные дроби в обыкновенные и выполните вычисления:
a) 9,(4) + 1,(2); б) 2,(34) + 0,(21); в) 19,(27) – 3,(73);
г) 6,(5) ∙ 18; д) 8,1 (6) : 2 11
19;