Введем еще одну термодинамическую характеристику, а именно теплоемкость. Определим теплоемкость С как количество тепла, получаемое телом единичной массы для повышения его температуры на один градус: C = δQ/dT. Это количество тепла может быть различным (но всегда положительным!) при проведении нагрева в разных условиях. Из всех возможных вариантов предельными являются два. Пусть тело нагревается при постоянном объеме (скажем, оно имеет твердые недеформируемые стенки; см. рис. 4.1.1). В этом случае телом не может совершаться механической работы.
Предмет и его прямое изображение, создаваемое тонкой линзой, расположены симметрично относительно фокуса линзы. Расстояние от предмета до фокуса линзы l = 4,0 см. Найти фокусное расстояние линзы. Решение: возможно два варианта – линза собирающая, изображение мнимое, либо линза рассеивающая, и изображение также мнимое. Пусть f – расстояние от линзы до изображения, d – расстояние между линзой и предметом, F – фокусное расстояние линзы. Рассмотрим оба случая по порядку. Линза собирающая. Изображение будет прямым (и мнимым) только в одном случае – если расстояние между линзой и предметом меньше фокусного, т.е. d < F. Тогда d = F – l и f = F + l. Подставим в формулу тонкой линзы, и после преобразований получим квадратное уравнение 1F=1d−1f=1F−l−1F+l=2lF2−l2,F2−2l⋅F−l2=0. Линза рассеивающая. Изображение прямое (мнимое, и при этом симметричное предмету относительно фокуса) может быть только в одном случае – если расстояние между линзой и предметом больше фокусного, т.е. d > F. Тогда d = F + l и f = F – l. Подставим в формулу тонкой линзы, и после преобразований получим квадратное уравнение −1F=1d−1f=1F+l−1F−l=−2lF2−l2,F2−2l⋅F−l2=0. Как видим, в обоих случаях получились одинаковые уравнения. Найдём корни этого уравнения и учтём, что F величина неотрицательная (правило знаков учли, при записи формулы линзы), т.е оставим только положительный корень квадратного уравнения F2−2l⋅F−l2=0,D=4l2+2l2=8l2,F1,2=2l±22√⋅l2=(1±2–√)⋅l,F=(1+2–√)⋅l. Так как принято считать фокусное расстояние рассеивающих линз величиной отрицательной, а у собирающих – положительной, то объединяя два случая, получаем F=±(1+2–√)⋅l. ответ: ± 9,6 см. (√2 ≈ 1,41)
Решение: возможно два варианта – линза собирающая, изображение мнимое, либо линза рассеивающая, и изображение также мнимое. Пусть f – расстояние от линзы до изображения, d – расстояние между линзой и предметом, F – фокусное расстояние линзы. Рассмотрим оба случая по порядку.
Линза собирающая. Изображение будет прямым (и мнимым) только в одном случае – если расстояние между линзой и предметом меньше фокусного, т.е. d < F. Тогда d = F – l и f = F + l. Подставим в формулу тонкой линзы, и после преобразований получим квадратное уравнение
1F=1d−1f=1F−l−1F+l=2lF2−l2,F2−2l⋅F−l2=0.
Линза рассеивающая. Изображение прямое (мнимое, и при этом симметричное предмету относительно фокуса) может быть только в одном случае – если расстояние между линзой и предметом больше фокусного, т.е. d > F. Тогда d = F + l и f = F – l. Подставим в формулу тонкой линзы, и после преобразований получим квадратное уравнение
−1F=1d−1f=1F+l−1F−l=−2lF2−l2,F2−2l⋅F−l2=0.
Как видим, в обоих случаях получились одинаковые уравнения. Найдём корни этого уравнения и учтём, что F величина неотрицательная (правило знаков учли, при записи формулы линзы), т.е оставим только положительный корень квадратного уравнения
F2−2l⋅F−l2=0,D=4l2+2l2=8l2,F1,2=2l±22√⋅l2=(1±2–√)⋅l,F=(1+2–√)⋅l.
Так как принято считать фокусное расстояние рассеивающих линз величиной отрицательной, а у собирающих – положительной, то объединяя два случая, получаем
F=±(1+2–√)⋅l.
ответ: ± 9,6 см. (√2 ≈ 1,41)