Давай резистора соединены последовательно и включены в цепь постоянного напряжения определение одного из них в два раза больше сопротивление другого во сколько раз увеличится сила тока в этой цепи если эти резистора соединить параллельно
Для решения задачи нужно воспользоваться законом всемирного тяготения для случая взаимодействия тело - Земля F = G mM/r^2, где G - постоянная всемирного тяготения, m - масса тела, M - масса Земли, r - расстояние центра тела от центра Земли.
Пусть размеры тела будут малы по сравнению с размерами Земли. Тогда, когда тело находится на поверхности Земли, его расстояние до центра Земли будет равен радиусу Земли R.
На тело, находящееся на поверхности Земли, сила тяжести (она же - сила всемирного тяготения для системы тело - Земля) равна F = mg.
Отсюда следует, что ускорение свободного падения на поверхности Земли равно g1 = GM/R^2.
На искомой высоте r g2 = GM/r^2.
По условию задачи g2 = 1/2 *g1; GM/r^2 = 1/2 * GM/R^2
Отсюда r^2 = 2 * R^2. Следовательно r = R*SQR(2).
Так как изначально тело находилось на расстоянии R от центра Земли, а для уменьшения ускорения свободного падения в 2 раза его нужно поднять на расстояние R*SQR(2) от центра Земли, то его расстояние от поверхности Земли будет равно R*SQR(2)-R, что составляет примерно 0,41R.
Как найти погрешность – последовательность действий
Измерьте величину 3 – 5 раз.
Сложите все результаты и разделите полученное число на их количество. Данное число является действительным значением.
Вычислите абсолютную погрешность путем вычитания полученного в предыдущем действии значения из результатов измерений. Формула: ∆Х = Хисл – Хист. В ходе вычислений можно получить как положительные, так и отрицательные значения. В любом случае берется модуль результата. Если необходимо узнать абсолютную погрешность суммы двух величин, то вычисления проводятся согласно такой формуле: ∆(Х+Y) = ∆Х+∆Y. Она также работает при необходимости расчета погрешности разности двух величин: ∆(Х-Y) = ∆Х+∆Y.
Узнайте относительную погрешность для каждого из измерений. В таком случае нужно разделить полученную абсолютную погрешность на действительное значение. Затем умножьте частное на 100%. ε(x)=Δx/x0*100%. Значение можно и не переводить в проценты.
Чтобы получить более точное значение погрешности, необходимо найти среднее квадратическое отклонение. Ищется оно достаточно просто: вычислите квадраты всех значений абсолютной погрешности, а затем найдите их сумму. Полученный результат необходимо разделить на число (N-1), в котором N – это число всех измерений. Последним действием станет извлечение корня из полученного результата. После таких вычислений будет получено среднее квадратическое отклонение, которое обычно характеризует погрешность измерений.
Для нахождения предельной абсолютной погрешности необходимо найти самое маленькое число, которое по своему значению равно или превышает значение абсолютной погрешности.
Предельная относительная погрешность ищется таким же методом, только нужно находить число, которое больше или равно значения относительной погрешности.
Пусть размеры тела будут малы по сравнению с размерами Земли. Тогда, когда тело находится на поверхности Земли, его расстояние до центра Земли будет равен радиусу Земли R.
На тело, находящееся на поверхности Земли, сила тяжести (она же - сила всемирного тяготения для системы тело - Земля) равна F = mg.
Отсюда следует, что ускорение свободного падения на поверхности Земли равно g1 = GM/R^2.
На искомой высоте r g2 = GM/r^2.
По условию задачи g2 = 1/2 *g1; GM/r^2 = 1/2 * GM/R^2
Отсюда r^2 = 2 * R^2. Следовательно r = R*SQR(2).
Так как изначально тело находилось на расстоянии R от центра Земли, а для уменьшения ускорения свободного падения в 2 раза его нужно поднять на расстояние R*SQR(2) от центра Земли, то его расстояние от поверхности Земли будет равно R*SQR(2)-R, что составляет примерно 0,41R.
Как найти погрешность – последовательность действий
Измерьте величину 3 – 5 раз.
Сложите все результаты и разделите полученное число на их количество. Данное число является действительным значением.
Вычислите абсолютную погрешность путем вычитания полученного в предыдущем действии значения из результатов измерений. Формула: ∆Х = Хисл – Хист. В ходе вычислений можно получить как положительные, так и отрицательные значения. В любом случае берется модуль результата. Если необходимо узнать абсолютную погрешность суммы двух величин, то вычисления проводятся согласно такой формуле: ∆(Х+Y) = ∆Х+∆Y. Она также работает при необходимости расчета погрешности разности двух величин: ∆(Х-Y) = ∆Х+∆Y.
Узнайте относительную погрешность для каждого из измерений. В таком случае нужно разделить полученную абсолютную погрешность на действительное значение. Затем умножьте частное на 100%. ε(x)=Δx/x0*100%. Значение можно и не переводить в проценты.
Чтобы получить более точное значение погрешности, необходимо найти среднее квадратическое отклонение. Ищется оно достаточно просто: вычислите квадраты всех значений абсолютной погрешности, а затем найдите их сумму. Полученный результат необходимо разделить на число (N-1), в котором N – это число всех измерений. Последним действием станет извлечение корня из полученного результата. После таких вычислений будет получено среднее квадратическое отклонение, которое обычно характеризует погрешность измерений.
Для нахождения предельной абсолютной погрешности необходимо найти самое маленькое число, которое по своему значению равно или превышает значение абсолютной погрешности.
Предельная относительная погрешность ищется таким же методом, только нужно находить число, которое больше или равно значения относительной погрешности.