ДАЙТЕ ОТВЕТ С ПОЯСНЕНИЕМ Разряженный конденсатор заряжают в течении 10 с. Определите энергию, запасенную за это время конденсатором, если емкость равна 1 мкФ, а сила тока 0,1 мА.
2) Найдите показания идеального амперметра в цепи, если он и три резистора сопротивлением 1,5 Ом, 2,5 Ом и 3 Ом включены последовательно в электрическую цепь, с источником ЭДС, равной 4 В, и внутренним сопротивлением 3 Ом.
3) Имеются два параллельно соединенных проводника, сопротивления которых соответственно равны 10 Ом и 12 Ом, которые подключены к источнику тока. За некоторое время в первом проводнике выделилось 840 Дж теплоты. Найдите количество теплоты, выделившееся за то же время во втором проводнике.
4) До какого расстояния могут сблизиться два электрона, если они движутся навстречу друг другу с далёкого расстояния с начальными скоростями, равными 5 • 105 м/с?
Обозначим массу и скорости до и после столкновения первого (малого вагона), как: m, v, u (искомая) .
Обозначим массу и скорости до и после столкновения второго (большего вагона), как: M, V, U .
Импульс и энергия сохраняются, так что:
mv – MV = MU – mu ; ЗСИ
mv²/2 + MV²/2 = MU²/2 + mu²/2 ; ЗСЭ
Соберём подобные:
m ( v + u ) = M ( U + V ) ;
m ( v² – u² ) = M ( U² – V² ) ;
Разделим второе на первое:
v – u = U – V ;
U = V + v – u ;
Подставим это выражение в ЗСИ
mv – MV = M(V+v–u) – mu ;
mv – MV = MV + Mv – Mu – mu ;
Mu + mu = 2MV + Mv – mv ;
(M+m)u = 2MV + (M–m)v ;
u = [ 2MV + (M–m)v ] / [ M + m ] ;
u = [ 2V + (1–m/M)v ] / [ 1 + m/M ] ≈ [ 2*0.2 + (1–2/3)0.5 ] / [ 1 + 2/3 ] ≈ 0.34 м/с .
(в соответствии с начальным положением –
– вагон поедет в противоположную сторону)
Импульс одного (меньшего) вагона: 20*0.5 = 10 тм/с ;
Импульс другого (большего) вагона: 30*0.2 = 6 тм/с – и он направлен противоположно движению меньшего вагона.
Общий импульс: 4 тм/с ;
Скорость всей системы (скорость центра масс) можно найти, разделив общий импульс системы вагонов на их общую массу:
4 тм/с : 50т = 0.08 м/с – это скорость центра масс (СЦМ).
В системе СЦМ импульс системы равен нулю, а энергия сохраняется. Импульсы обоих вагонов, таким образом – равны в СЦМ по модулю, а значит, их скорости пропорциональны, и если бы одна из них по модулю увеличилась бы, то увеличилась бы и другая, а это невозможно в сиу сохранения энергии. Аналогично, скорости не могут и уменьшиться в СЦМ. Т.е. скорости вагонов в СЦМ сохранятся по модулю.
Ясно, что вагоны до упругого соударения/взаимодействия съезжаются, а после него – разъезжаются. А значит, в СЦМ меньший вагон станет двигаться в противоположную сторону с той же скоростью, что и до взаимодействия (как, в прочем, и другой вагон).
До взаимодействия, скорость меньшего вагона относительно СЦМ составляет 0.5–0.08=0.42 м/с.
После взаимодействия скорость меньшего вагона относительно СЦМ составит –0.42 м/с.
В системе связанной с землёй (в ЛСО) скорость вагона после взаимодействия станет равна: –0.42+0.08 = –0.34 м/с. Т.е. вагон будет катиться в противоположную сторону.
ВТОРОЙ строго):
Общий импульс до взаимодействия:
mv–MV ;
Через центр масс импульс системы выражается, как: (M+m)vц, откуда:
(M+m)vц = mv – MV ;
vц = [ mv – MV ] / [ M + m ] ;
Относительно СЦМ меньший вагон движется со скоростью:
v' = v – vц ;
После взаимодействия скорость вагона в СЦМ изменится на противоположную и станет равна:
u' = –v' = vц – v ;
В ЛСО конечная скорость вагона:
u = u' + vц = 2vц – v = 2 [ mv – MV ] / [ M + m ] – v =
= [ 2mv – 2MV – Mv – mv ] / [ M + m ] = [ (m–M)v – 2MV ] / [ M + m ] =
= – [ (1–m/M)v + 2V ] / [ 1 + m/M ] ;
u = – [ (1–m/M)v + 2V ] / [ 1 + m/M ] ≈ – [ (1–2/3)0.5 + 2*0.2 ] / [ 1 + 2/3 ] ≈ –0.34 м/с .