ідеальний коливальний контур складається з конденсатора ємністю 48 мкф і котушки індуктивністю 40мГн. В деякий момент часу напруга на конденсаторі становила 50 В, а струм у контурі був 1 А. Визначте максимальне значення сили струму.
Задача очень простая, на умение записывать уравнения движения тел в соответствующих осях. Рисунок для решения мы приводим справа, для его увеличения нажмите на него.
Запишем уравнения движения тела по оси y:
y=v0sinα⋅t—gt22 Заменяя в уравнении y на данное h, получим квадратное уравнения, которое необходимо решить для нахождения времени полета. Неудивительно, что уравнение имеет 2 корня, поскольку на данной высоте тело за все время полета будет находиться 2 раза, что видно из рисунка.
Взять любые два ближайших деления обозначенные цифрами.
Например: 30 мл и 40 мл.
2. Найти разность этих чисел.
40 мл – 30 мл = 10 мл
Рисунок шкалы мензурки
3. Разделить полученное число на количество маленьких, необозначенных цифрами, делений между ними. Вспомним, что количество делений равно количеству промежутков между штрихами (а не количеству штрихов).
(40 мл – 30 мл) : 5 = 10 мл : 5 = 2 мл
4. Полученное число и будет ценой деления шкалы мензурки, показывающей, сколько миллилитров соответствует одному маленькому делению.
Цена деления шкалы мензурки: 2 мл.
5. Погрешность прибора равна половине цены деления.
Погрешность мензурки: 1 мл.
6.Запишем результат измерения.
Объём жидкости в мензурке V = 50 мл + 3 · 2 мл = 56 мл
С учётом погрешности V = 56 мл + 1 мл
(50 мл уже есть под уровнем жидкости, 3 деления по 2 мл, и плюс погрешность измерения).
Запишем уравнения движения тела по оси y:
y=v0sinα⋅t—gt22
Заменяя в уравнении y на данное h, получим квадратное уравнения, которое необходимо решить для нахождения времени полета. Неудивительно, что уравнение имеет 2 корня, поскольку на данной высоте тело за все время полета будет находиться 2 раза, что видно из рисунка.
h=v0sinα⋅t—gt22
gt2—2v0sinα⋅t+2h=0
Найдем дискриминант:
D=4v20sin2α—8gh
Проверять положительность дискриминанта не будем, поскольку решение задачи быть должно, значит он априори неотрицателен.
Тогда корни квадратного уравнения равны:
t=2v0sinα±4v20sin2α—8gh−−−−−−−−−−−−√2g
Мы получили ответ в общем виде. Теперь подставим все известные величины в СИ:
t=2⋅10⋅sin30∘±4⋅102⋅sin230∘—8⋅10⋅1,05−−−−−−−−−−−−−−−−−−−−−−−√2⋅10
Получаем два корня:
[t=0,7сt=0,3с
40 мл – 30 мл = 10 мл
(40 мл – 30 мл) : 5 = 10 мл : 5 = 2 мл
Объяснение:
Взять любые два ближайших деления обозначенные цифрами.
Например: 30 мл и 40 мл.
2. Найти разность этих чисел.
40 мл – 30 мл = 10 мл
Рисунок шкалы мензурки
3. Разделить полученное число на количество маленьких, необозначенных цифрами, делений между ними. Вспомним, что количество делений равно количеству промежутков между штрихами (а не количеству штрихов).
(40 мл – 30 мл) : 5 = 10 мл : 5 = 2 мл
4. Полученное число и будет ценой деления шкалы мензурки, показывающей, сколько миллилитров соответствует одному маленькому делению.
Цена деления шкалы мензурки: 2 мл.
5. Погрешность прибора равна половине цены деления.
Погрешность мензурки: 1 мл.
6.Запишем результат измерения.
Объём жидкости в мензурке V = 50 мл + 3 · 2 мл = 56 мл
С учётом погрешности V = 56 мл + 1 мл
(50 мл уже есть под уровнем жидкости, 3 деления по 2 мл, и плюс погрешность измерения).