После того, как предмет приблизили к линзе d1 = d-1; f1= (f+x); Г1 = f1 / d1 ; f1 = Г1·d1 Рассуждая аналогично, ка было сделано выше получаем: 1/F = 1/d1 + 1/f1 или 1/F = f1*d1 / (f1+d2) 1/F = Г1·d1·d1 / (Г1·d1 + d1) = Г1·d1 / (Г1 +1) (2)
Поскольку фокус НЕ ИЗМЕНИЛСЯ, то приравниваем (1) и (2) с учетом данных по условию задачи: 2·d / (2+1) = 4·(d-1) / (4+1) d = 6 см f = 12 см
d1 = 5 f2 = 4·5 = 20 см
Было f = 12 см , стало f1 = 20 см Экран передвинули на 20-12 = 8 см
на основании закона сохранения и превращения энергии составим уравнение:
wк1+wp1=wk2+wp2, где wк1, wp1 -кинетическая и потенциальная энергия шарика, находящегося на высоте h на наклонной плоскости; wк2, wp2 - кинетическая и потенциальная энергия шарика у основания наклонной плоскости.
нулевой уровень потенциальной энергии совместим с основанием наклонной плоскости. тогда
wp1 = mgh+q1*q2/4*pi*e0*h
wk1 = 0
второе слагаемое в выражении для wpl представляет собой потенциальную энергию, обусловленную взаимным расположением зарядов q1 и q2. пусть υ — скорость шарика у основания наклонной плоскости. тогда
wk2=m*v^2/2.
в это время расстояние между , как видно из рисунка, равно h/tgα. поэтому
wp2 = q1*q2*tga/4*pi*e0*h
с учетом этих значений энергии уравнение первое примет вид:
Г= f / d, (1)
где
f - расстояние до изображения предмета
d - расстояние до предмета,
тогда f = Г·d:
По формуле тонкой линзы:
1/F = 1/d + 1/f или
1/F =f·d / (f +d)
1/F = Г·d*d / (Г·d+d) = Г·d / (Г+1) (1)
После того, как предмет приблизили к линзе d1 = d-1;
f1= (f+x); Г1 = f1 / d1 ; f1 = Г1·d1
Рассуждая аналогично, ка было сделано выше получаем:
1/F = 1/d1 + 1/f1 или
1/F = f1*d1 / (f1+d2)
1/F = Г1·d1·d1 / (Г1·d1 + d1) = Г1·d1 / (Г1 +1) (2)
Поскольку фокус НЕ ИЗМЕНИЛСЯ, то приравниваем (1) и (2) с учетом данных по условию задачи:
2·d / (2+1) = 4·(d-1) / (4+1)
d = 6 см
f = 12 см
d1 = 5
f2 = 4·5 = 20 см
Было f = 12 см , стало f1 = 20 см
Экран передвинули на 20-12 = 8 см
ответ: 8 сантиметров
ответ:
объяснение:
на основании закона сохранения и превращения энергии составим уравнение:
wк1+wp1=wk2+wp2, где wк1, wp1 -кинетическая и потенциальная энергия шарика, находящегося на высоте h на наклонной плоскости; wк2, wp2 - кинетическая и потенциальная энергия шарика у основания наклонной плоскости.
нулевой уровень потенциальной энергии совместим с основанием наклонной плоскости. тогда
wp1 = mgh+q1*q2/4*pi*e0*h
wk1 = 0
второе слагаемое в выражении для wpl представляет собой потенциальную энергию, обусловленную взаимным расположением зарядов q1 и q2. пусть υ — скорость шарика у основания наклонной плоскости. тогда
wk2=m*v^2/2.
в это время расстояние между , как видно из рисунка, равно h/tgα. поэтому
wp2 = q1*q2*tga/4*pi*e0*h
с учетом этих значений энергии уравнение первое примет вид:
mgh+q1*q2/4*pi*e0*h = m*v^2/2 + q1*q2*tga/4*pi*e0*h
отсюда найдем скорость:
v = √2h+q1*q2*tga/2*pi*m*e0*h(1-tga)