для цилиндра рассмотреть ситуацию когда над поршнем вакуум в сосуде и в него находится один и тот же газ с молярной массой мю при одинаковой температуре t и Концентрациях в сосуде и вне сосуда n и n1 соответственно Найдите время за которое поршень Поднимется на высоту в два раза превышающую изначальную. начальный объём V
( от первоначальной массы льда отнимем массу оставшегося, это и будет масса расплавившегося льда) . По уравнению теплового баланса: Q1+Q2=0
(Q1-количество теплоты, отданное медным телом, при его остывании от70град до 0. Q2- количество теплоты полученное льдом, для плавления массы m1).
Q1=c*m2( t - t2) ( t=0, t2=70, c-удельная теплоемкость меди =380Дж / кг*град.) .
Q2= лямбда*m1= лямбда ( m - 2,8) , подставим в уравнение теплового баланса и
решим относительно m. c*m2( t - t2) + лямбда*( m-2,8)=0 ( лямбда- удельная теплота плавления льда) . m=( лямбда*2,8 - с*m2( t - t2)) / лямбда. m=2,99345кг.
1) электронная ( проводимость "n " - типа)
При низких температурах в полупроводниках все электроны связаны с ядрами и сопротивление большое; при увеличении температуры кинетическая энергия частиц увеличивается, рушатся связи и возникают свободные электроны - сопротивление уменьшается.
Свободные электроны перемещаются противоположно вектору напряженности эл. поля.
Электронная проводимость полупроводников обусловлена наличием свободных электронов.
2) дырочная ( проводимость " p" - типа )
При увеличении температуры разрушаются ковалентные связи, осуществляемые валентными электронами, между атомами и образуются места с недостающим электроном - "дырка".
Она может перемещаться по всему кристаллу, т. к. ее место может замещаться валентными электронами. Перемещение "дырки" равноценно перемещению положительного заряда.
Перемещение дырки происходит в направлении вектора напряженности электрического поля.
2. Данный закон следует из закона сохранения заряда. Если цепь содержит p узлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы) , где есть закон сохранения величины и поток этой величины.