В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
iweriooo
iweriooo
14.12.2021 14:54 •  Физика

Для настоящий любителей . егэ 30, 31. 25

Показать ответ
Ответ:
misarevakin6
misarevakin6
12.03.2023 04:33

Объяснение:

Посчитаем поле бесконечной равномерно заряженной нити. Из аксиальной симметрии задачи следует, что и поле имеет аксиальную симметрию. Другими словами, оно является функцией только расстояния от нити до точки наблюдения: \mathbf{E}=E(r)\cdot \mathbf{e_r}}

Здесь \mathbf{e_r}er - единичный вектор вдоль перпендикуляра из точки наблюдения на нить, он "смотрит" прочь от последней, а rr - расстояние от точки наблюдения до нити.

Для того, чтобы посчитать поле в явном виде, проще всего воспользоваться теоремой Гаусса.

Выберем такую поверхность: это цилиндр, ось которого совпадает с нитью, радиусом rr и длиной образующей ll .

Теорема Гаусса гласит, что поток поля через замкнутую поверхность с точностью до размерного множителя \frac{1}{\varepsilon_0}ε01 равен заряду внутри нее:

$\int\limits_{\partial V} \mathbf{E}\cdot \mathrm d\mathbf S=\frac{1}{\varepsilon_0}\int\limits_V \rho\ \mathrm d V

Левая часть в нашем случае распадается на три слагаемых:

1) поток через боковую поверхность,

2) поток через верхнее дно,

3) поток через нижнее дно.

Очевидно, что два последних вклада не дадут, поскольку, как уже было сказано, поле имеет только радиальные компоненты, а значит, перпендикулярно плоскостям, в которых лежат основания цилиндра.

Первое слагаемое дает вклад \Phi=E(r)\cdot 2\pi r\cdot lΦ=E(r)⋅2πr⋅l

Правая часть теоремы Гаусса тоже очень легко считается.

Q=\lambda lQ=λl

Итак,

E(r)2\pi rl=\dfrac{1}{\varepsilon_0}\lambda l.E(r)2πrl=ε01λl.

Отсюда легко выразить явный вид поля:

E(r)=\dfrac{\lambda}{2\pi \epsilon_0}\cdot \dfrac 1rE(r)=2πϵ0λ⋅r1 .

Все, подставим числа, посчитаем.

E(r)=\dfrac{k\lambda}{2r}=\dfrac{9\cdot 10^9\cdot 2\cdot 10^{-4}}{2\cdot 10\cdot 10^{-2}}=900\mathrm{\ \dfrac Vm}.E(r)=2rkλ=2⋅10⋅10−29⋅109⋅2⋅10−4=900 mV.

0,0(0 оценок)
Ответ:
STAS228917654321
STAS228917654321
28.07.2021 16:02

R₁ = 6356,8 км - полярный радиус

R₂ = 6378,1 км - экваториальный радиус

M = 5,97*10²⁴ кг - масса Земли

Для решения данный задачи нужно учесть значение радиусов Земли, а также факт вращения Земли вокруг своей оси. При этом значение экваториального ускорения будет уменьшаться на величину центростремительного ускорения на экваторе.

g₁ = G * M / R₁² = 6,67*10⁻¹¹ Н*м²/кг² * 5,97*10²⁴ кг / (6356,8*10³ м)² ≈ 9,854 м/с²

g' = G * M / R₂² = 6,67*10⁻¹¹ Н*м²/кг² * 5,97*10²⁴ кг / (6378,1*10³ м)² = 9,789 м/с²

За сутки Земля совершает один оборот => ω = 2 *π рад / 86400 с - угловая скорость обращения Земли

a = ω² * R₂ - центростремительное ускорение на экваторе

а = (2 *π рад / 86400 с)² * 6378,1*10³ м ≈ 0,034 м/с²

g₂ = g' - a = 9,789 м/с² - 0,034 м/с² = 9,755 м/с²

(g₁ - g₂) * 100 % / g₁ = (9,854 м/с² - 9,755 м/с²) * 100 % / 9,854 м/с² ≈ 1,00 %

Ускорение на полюсе приблизительно на 1 % больше чем на экваторе

Объяснение:

0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота