Шаг 1. Выясняем резонансные частоты. Колебательный контур описывается линейным дифференциальным уравнением второго порядка: , полученным из уравнения Кирхгофа введением обозначений: , . Для выяснения резонансной частоты возьмем вынуждающую силу, изменяющуюся по закону косинуса. . Решение данного уравнения, согласно теории д.у., имеет вид: , где первое слагаемое - решение с.о.у. (оно затухает и нас не интересует), а второе - произвольное частное решение, которое ищется в указанном виде (в силу особенностей взятой вынуждающей силы). Подставим решение в уравнение и (с например, векторной диаграммы) получим . Зная, что и . Получаем для амплитуды тока и напряжений следующие выражения: и . Таким образом, решая квадратные уравнения в знаменателях, можно понять, что наибольшая амплитуда (резонанс) у напряжения достигается при частоте , а у тока при . Шаг 2. Что такое добротность Как было написано ранее, за затухание собственных колебаний системы отвечает слагаемое . За это время система совершила колебаний, где - собственная частота колебаний системы (следует из решения д.у.). Так вот, величина называется добротностью контура. Шаг 3. Накладываем ограничения
Решая это неравенство получаем: , отсюда Шаг 4. Находим добротность Вообще говоря, и Таким образом, отличие истинного решения от полученного примерно 0.03. ответ:
P.S. Что касается погрешности, то в принципе если повозиться, то, наверное, можно найти результат более точно, но это потребует лишней возни с алгеброй, которую я недолюбливаю.
Сначала изложим общий ход решения. Нужно найти плотность полученного сплава ρ₁ и сравнить её со средней плотностью кубика ρ₂. Средняя плотность будет равна массе кубика деленной на его объем. Если эта средня плотность окажется меньше плотности сплава, значит пустоты есть.
Найдем массу полученного кубика. Для этого сложим массы исходных компонентов.
Далее находим объем
А затем выражаем среднюю плотность [г/см³] Теперь необходимо найти плотность сплава. Для этого находим объемы его компонентов. И считаем, что объем сплава будет равен их сумме. [см³] [см³] Суммарный объем: [см³] А плотность сплава соответственно: [г/см³]
Значит пустоты есть. И объем этой пустоты равен разности объема кубика и суммарного объема сплава [см³]
Колебательный контур описывается линейным дифференциальным уравнением второго порядка:
, полученным из уравнения Кирхгофа введением обозначений: , . Для выяснения резонансной частоты возьмем вынуждающую силу, изменяющуюся по закону косинуса. .
Решение данного уравнения, согласно теории д.у., имеет вид:
, где первое слагаемое - решение с.о.у. (оно затухает и нас не интересует), а второе - произвольное частное решение, которое ищется в указанном виде (в силу особенностей взятой вынуждающей силы). Подставим решение в уравнение и (с например, векторной диаграммы) получим .
Зная, что и . Получаем для амплитуды тока и напряжений следующие выражения: и .
Таким образом, решая квадратные уравнения в знаменателях, можно понять, что наибольшая амплитуда (резонанс) у напряжения достигается при частоте , а у тока при .
Шаг 2. Что такое добротность
Как было написано ранее, за затухание собственных колебаний системы отвечает слагаемое . За это время система совершила колебаний, где - собственная частота колебаний системы (следует из решения д.у.). Так вот, величина называется добротностью контура.
Шаг 3. Накладываем ограничения
Решая это неравенство получаем: , отсюда
Шаг 4. Находим добротность
Вообще говоря, и Таким образом, отличие истинного решения от полученного примерно 0.03.
ответ:
P.S. Что касается погрешности, то в принципе если повозиться, то, наверное, можно найти результат более точно, но это потребует лишней возни с алгеброй, которую я недолюбливаю.
Нужно найти плотность полученного сплава ρ₁ и сравнить её со средней плотностью кубика ρ₂. Средняя плотность будет равна массе кубика деленной на его объем.
Если эта средня плотность окажется меньше плотности сплава, значит пустоты есть.
Найдем массу полученного кубика. Для этого сложим массы исходных компонентов.
Далее находим объем
А затем выражаем среднюю плотность
[г/см³]
Теперь необходимо найти плотность сплава. Для этого находим объемы его компонентов. И считаем, что объем сплава будет равен
их сумме.
[см³]
[см³]
Суммарный объем:
[см³]
А плотность сплава соответственно:
[г/см³]
Значит пустоты есть.
И объем этой пустоты равен разности объема кубика и суммарного объема сплава
[см³]