Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил: F1/F2 = L2/L1
А вот как сформулировал постулаты о рычаге сам Архимед:
1) Равные веса, находящиеся на равных расстояниях (от точки опоры), находятся в равновесии, а равные веса, находящиеся на неравных расстояниях, не находятся в равновесии, но перевес происходит в сторону того веса, который находится на большем расстоянии.
2) Если два веса, находясь на определенном расстоянии, уравновешивают друг друга и если к одному из этих весов что-нибудь прибавить, то веса уже не будут уравновешивать друг друга, но наклонятся к тому весу, который увеличили.
3) Если подобным же образом отнять что-либо от одного из весов, то весы не останутся в равновесии, но отклонятся к тому, от которого не отнимали.
Измерение ускорения свободного падения с математического маятника Цель работы: научиться измерять ускорение свободного падения, используя формулу периода колебаний математического маятника. Приборы и материалы: штатив, шарик с прикрепленной к нему нитью, измерительная лента, секундомер (или часы с секундной стрелкой) . Порядок выполнения работы 1. Подвесьте к штативу шарик на нити длиной 30 см. 2. Измерьте время 10 полных колебаний маятника и вычислите его период колебаний. Результаты измерений и вычисления занесите в таблицу 13. 3. Пользуясь формулой периода колебаний математического маятника T = 2p, вычислите ускорение свободного падения по формуле: g = . 4. Повторите измерения, изменив длину нити маятника. 5. Вычислите относительную и абсолютную погрешность изменения ускорения свободного падения для каждого случая по формулам: dg = = + ; Dg = g•dg. Считайте, что погрешность измерения длины равна половине цены деления измерительной ленты, а погрешность измерения времени — цене деления секундомера. 6. Запишите значение ускорения свободного падения в таблицу 13 с учетом погрешности измерений.
Рычаг находится в равновесии тогда, когда силы, действующие на него, обратно пропорциональны плечам этих сил: F1/F2 = L2/L1
А вот как сформулировал постулаты о рычаге сам Архимед:
1) Равные веса, находящиеся на равных расстояниях (от точки опоры), находятся в равновесии, а равные веса, находящиеся на неравных расстояниях, не находятся в равновесии, но перевес происходит в сторону того веса, который находится на большем расстоянии.
2) Если два веса, находясь на определенном расстоянии, уравновешивают друг друга и если к одному из этих весов что-нибудь прибавить, то веса уже не будут уравновешивать друг друга, но наклонятся к тому весу, который увеличили.
3) Если подобным же образом отнять что-либо от одного из весов, то весы не останутся в равновесии, но отклонятся к тому, от которого не отнимали.
Объяснение:
с математического маятника
Цель работы:
научиться измерять ускорение свободного падения, используя формулу периода колебаний математического маятника.
Приборы и материалы:
штатив, шарик с прикрепленной к нему нитью, измерительная лента, секундомер (или часы с секундной стрелкой) .
Порядок выполнения работы
1. Подвесьте к штативу шарик на нити длиной 30 см.
2. Измерьте время 10 полных колебаний маятника и вычислите его период колебаний. Результаты измерений и вычисления занесите в таблицу 13.
3. Пользуясь формулой периода колебаний математического маятника T = 2p, вычислите ускорение свободного падения по формуле: g = .
4. Повторите измерения, изменив длину нити маятника.
5. Вычислите относительную и абсолютную погрешность изменения ускорения свободного падения для каждого случая по формулам:
dg = = + ; Dg = g•dg.
Считайте, что погрешность измерения длины равна половине цены деления измерительной ленты, а погрешность измерения времени — цене деления секундомера.
6. Запишите значение ускорения свободного падения в таблицу 13 с учетом погрешности измерений.