Два одинаковых по размеру шарика массой m1 и массой m2 связаны нитью, и будучи полностью погружены в жидкость находятся в равновесии. (начертить рисунок) P.S. что найти понятно, а вот в рисунке есть сомнения.
Дано: не моё, но, думаю, верно v=0.5 м/с t₁=1.5 мин=90 с а=0,2 м/с² v₁=5 м/с Найти: t Решение: За полторы минуты юноша отошел от станции на расстояние Δs Δs=vt₁=0.5*90=45 (м) Если он нагнал поезд, то он пробежал путь s₁, а поезд путь s₂. Очевидно, что s₁-Δs=s₂ По формуле пути при равноускоренном движении s₂=at²/2 s₁-Δs=at²/2 v₁t-Δs=at²/2 at²/2-v₁t+Δs=0 Подставляя данные, получаем квадратное уравнение 0,2t²/2-5t+45=0 t²-50t+450=0 D=50²-4*450=700 √D≈26.5 t₁=(50-26.5)/2≈11.8 (c) Второе значение можем не находить, т.к. уже ясно, что он догонит поезд через 11,8 с ответ: да, сможет.
Числа π и e Все знают геометрический смысл числа π — это длина окружности с единичным диаметром:А вот смысл другой важной константы, e, имеет свойство быстро забываться. То есть, не знаю, как вам, а мне каждый раз стоит усилий вспомнить, чем же так замечательно это число, равное 2,7182818284590... (значение я, однако, по памяти записал). Поэтому я решил написать заметку, чтобы больше из памяти не вылетало.Число e по определению — предел функции y = (1 + 1 / x)x при x → ∞:xy1(1 + 1 / 1)1= 22(1 + 1 / 2)2= 2,253(1 + 1 / 3)3= 2,3703703702...10(1 + 1 / 10)10= 2,5937424601...100(1 + 1 / 100)100= 2,7048138294...1000(1 + 1 / 1000)1000= 2,7169239322...∞lim× → ∞= 2,7182818284590...Это определение, к сожалению, не наглядно. Непонятно, чем замечателен этот предел (несмотря на то, что он называется «вторым замечательным»). Подумаешь, взяли какую-то неуклюжую функцию, посчитали предел. У другой функции другой будет.Но число e почему-то всплывает в целой куче самых разных ситуаций в математике.Для меня главный смысл числа e раскрывается в поведении другой, куда более интересной функции,y = kx. Эта функция обладает уникальным свойством при k = e, которое можно показать графически так:В точке 0 функция принимает значение e0 = 1. Если провести касательную в точке x = 0, то она пройдёт к оси абсцисс под углом с тангенсом 1 (в жёлтом треугольнике отношение противолежащего катета 1 к прилежащему 1 равно 1). В точке 1 функция принимает значение e1 = e. Если провести касательную в точке x = 1, то она пройдёт под углом с тангенсом e (в зелёном треугольнике отношение противолежащего катета e к прилежащему 1 равно e). В точке 2 значение e2 функции снова совпадает с тангенсом угла наклона касательной к ней. Из-за этого, заодно, сами касательные пересекают ось абсцисс ровно в точках −1, 0, 1, 2 и т. д.Среди всех функций y = kx (например, 2x, 10x, πx и т. д.), функция ex — единственная обладает такой красотой, что тангенс угла её наклона в каждой её точке совпадает со значением самой функции. Значит по определению значение этой функции в каждой точке совпадает со значением её производной в этой точке: (ex)´ = ex. Почему-то именно число e = 2,7182818284590... нужно возводить в разные степени, чтобы получилась такая картинка.Именно в этом, на мой вкус, состоит его смысл.Числа π и e входят в мою любимую формулу — формулу Эйлера, которая связывает 5 самых главных констант — ноль, единицу, мнимую единицу i и, собственно, числа π и е:eiπ + 1 = 0Почему число 2,7182818284590... в комплексной степени 3,1415926535...i вдруг равно минус единице? ответ на этот вопрос выходит за рамки заметки и мог бы составить содержание небольшой книги, которая потребует некоторого начального понимания тригонометрии, пределов и рядов.Меня всегда поражала красота этой формулы. Возможно, в математике есть и более удивительные факты, но для моего уровня (тройка в физико-математическом лицее и пятёрка за комплексный анализ в универе) это самое главное чудо.
не моё, но, думаю, верно
v=0.5 м/с
t₁=1.5 мин=90 с
а=0,2 м/с²
v₁=5 м/с
Найти: t
Решение:
За полторы минуты юноша отошел от станции на расстояние Δs
Δs=vt₁=0.5*90=45 (м)
Если он нагнал поезд, то он пробежал путь s₁, а поезд путь s₂.
Очевидно, что
s₁-Δs=s₂
По формуле пути при равноускоренном движении
s₂=at²/2
s₁-Δs=at²/2
v₁t-Δs=at²/2
at²/2-v₁t+Δs=0
Подставляя данные, получаем квадратное уравнение
0,2t²/2-5t+45=0
t²-50t+450=0
D=50²-4*450=700
√D≈26.5
t₁=(50-26.5)/2≈11.8 (c)
Второе значение можем не находить, т.к. уже ясно, что он догонит поезд через 11,8 с
ответ: да, сможет.