Два пловца начали плыть на встречу друг другу с точек, находящихся в точности напротив друг друга на разных берегах реки. при этом пловцы всё время выдерживают направление движения друг на друга. скорость первого пловца относительно воды 1 м/с , скорость второго 0,4 м/с. ширина реки 65м, скорость течения реки 0,9 м/с. на какое расстояние s отнесёт их река к тому моменту как они встретятся? чему будет равен в системе отсчёта, связанной с берегом, квадрат пути первого пловца до момента встречи надо!
Для решения данной задачи прежде всего найдём время tв, спустя которое встретятся пловцы, для чего определим их скорость сближения (относительно воды - подвижной системы координат) Vc = V1+V2 = 1,0 + 0,4 = 1,4 м/с , где V1=1,0 м/c - скорость 1-го пловца относительно воды, V2=0,4 м/c - скорость 2-го пловца относительно воды. Тогда время, спустя которое встретятся пловцы, tв=L/Vc=65/1,4=46,4 c, где L=65 м - ширина реки.
Очевидно, что за это же время река отнесёт их относительно берега (неподвижной системы координат) на расстояние S = U×tв = 0,9×46,4 = 41,8 м, где U=0,9 м/с - скорость течения реки.
Квадрат же пути S1²= L1² + S² первого пловца до момента встречи в системе отсчёта, связанной с берегом (т.е. неподвижной системы координат) находится из решения прямоугольного треугольника, в котором S1 - гипотенуза, а катеты: L1=V1×tв=1,0×46,4 = 46,4 м - расстояние, которое преодолел 1-й пловец относительно воды и S=U×tв = 0,9×46,4 = 41,8 м — снос пловца относительно берега; откуда S1 = √(46,4² + 41,8²) = 62,45 м