две лампочки мощностью P1=7,5 Вт каждая рассчитанные на напряжение U=11В включены последовательно в цеп напряжение U=22В определите силу тока в цепи и напряжение для каждой из них
Теперь вычислим относительную погрешность измерения g:
ε g = ε L + 2*ε pi + 2*ε t ср.
ε pi - это погрешность округления Пи (= | (3,14 - 3,14159)/3,14 | *100% = 0,051%), ею можно пренебречь, т.к. в расчётах использовалось округлённое значение 3,14, тогда:
ε g = ε L + 2*ε t ср. = 0,002 + 0,2 = 0,202
Определим абсолютную погрешность Δg:
Δg = ε g * g cp. = 0,202 * 10,18 = 2,06
g cp. - Δg ≤ g ≤ g cp. + Δg
10,18 - 2,06 ≤ 9,8 ≤ 10,18 + 2,06
8,12 ≤ 9,8 ≤ 12,24
Известное значение ускорения свободного падения входит в интервал, значит всё ок. Измерения сделали нормальные.)
Дано:
Т = (π/5) с
m = 290 г = 0,29 кг
k - ?
Т = 2π/ω
Fупр_max = ma_max
a_max = Fупр_max/m = -(kx_max)/m = -(k/m)*x_max
x = A*sin(ωt) - уравнение координаты
x' = υ = A*cos(ωt)*ω = Αω*cos(ωt) - уравнение скорости
x'' = υ' = a = Aω*(-sin(ωt))*ω = -Aω²*sin(ωt) - уравнение ускорения
-Aω² = a_max => -Aω² = -(k/m)*x_max, где А = x_max => -x_max*ω² = -(k/m)*x_max | *(-1/x_max)
ω² = k/m => ω = √(k/m)
Т = 2π/ω = 2π/√(k/m) = 2π*√(m/k)
T² = 4π²*(m/k) = 4π²m/k
k = 4π²m/T² = 4π²*0,29/(π/5)² = 4π²*0,29*25/π² = 4*0,29*25 = 100*0,29 = 29 Н/м
ответ: 29 Н/м.
Найдём среднее время:
t ср. = (t1 + t2 + t3 + t4 + t5 + t6) / n = 34,26 + 34,31 + 34,31 + 34,15 + 34,38 + 34,41) / 6 = 34,3 с
Расчёты для абсолютной погрешности Δt:
Δt = | t - t ср. |
Δt1 = | t1 - t ср. | = | 34,26 - 34,3 | = 0,04
Δt2 = | t2 - t ср. | = | 34,31 - 34,3 | = 0,01
Δt3 = | t3 - t ср. | = | 34,31 - 34,3 | = 0,01
Δt4 = | t4 - t ср. | = | 34,15 - 34,3 | = 0,15
Δt5 = | t5 - t ср. | = | 34,38 - 34,3 | = 0,08
Δt6 = | t6 - t ср. | = | 34,41 - 34,3 | = 0,11
Определим среднюю абсолютную погрешность Δt cp.:
Δt cр. = (Δt1 + Δt2 + Δt3 + Δt4 + Δt5 + Δt6) / 6 = 0,07
Вычислим среднее ускорение свободного падения, выразив его из равенства периодов:
Т = t/N
T = 2pi*√(L/g ср.)
t ср./N = 2pi*√(L/g ср.)
g ср. = 4pi²*(L*N²)/t²cр. = 4*3,14²*(0,759*20²)/34,3² = 10,18 м/с²
Далее найдём среднюю относительную погрешность времени:
ε t ср. = (Δt cр. / t ср.) * 100% = (0,07 / 34,3) * 100% = 0,2
Вычислим относительную погрешность измерения длины маятника:
ε L = ΔL/L
абсолютная погрешность ΔL = ΔL изм. ленты + ΔL отсчёта = 0,001 + 0,0005 = 0,0015
ε L = ΔL/L = 0,0015 / 0,759 = 0,002
Теперь вычислим относительную погрешность измерения g:
ε g = ε L + 2*ε pi + 2*ε t ср.
ε pi - это погрешность округления Пи (= | (3,14 - 3,14159)/3,14 | *100% = 0,051%), ею можно пренебречь, т.к. в расчётах использовалось округлённое значение 3,14, тогда:
ε g = ε L + 2*ε t ср. = 0,002 + 0,2 = 0,202
Определим абсолютную погрешность Δg:
Δg = ε g * g cp. = 0,202 * 10,18 = 2,06
g cp. - Δg ≤ g ≤ g cp. + Δg
10,18 - 2,06 ≤ 9,8 ≤ 10,18 + 2,06
8,12 ≤ 9,8 ≤ 12,24
Известное значение ускорения свободного падения входит в интервал, значит всё ок. Измерения сделали нормальные.)
Вот как-то так.