Две материальные точки движутся равноускоренно вдоль одной прямой. В момент встречи они имеют равные по величине скорости, направленные в одну сторону. Векторы ускорений этих точек направлены в разные стороны и отличаются по модулю вдвое. Пусть S1 — путь, пройденный тормозящей точкой c указанного момента до остановки, а S2 — путь, пройденный за это же время второй точкой. Найдите максимально возможное отношение S2S1 в условиях данной задачи. ответ округлите до десятых.
Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление скорости не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.
Объяснение:
Модуль перемещения совпадает с пройденным путём в том и только в том случае, если при движении направление скорости не изменяется. При этом траекторией будет отрезок прямой. В любом другом случае, например, при криволинейном движении, из неравенства треугольника следует, что путь строго больше.
Дано:
v1 = 1 м/с
v2 = 0,5 м/с
L = 1 м
Найти:
w = ? рад/с
v = w*R => w = v/R
w1 = v1/R1
w2 = v2/R2
Очевидно, что w1 = w2 = w, т.к. вращательное движение стержня равномерное (в условиях не говорится, что линейные скорости обоих концов меняют своё значение, значит они - постоянны) и угловая скорость всех точек в таком случае одинаковая. Запишем радиусы через длину стержня и выразим радиус одного из концов:
L = R1 + R2 => R1 = L - R2
Приравняем значение w1 к значению w2 и выразим радиус второго конца стержня:
w1 = w2
v1/(L - R2) = v2/R2
L - R2 = (v1*R2)/v2
L = (v1*R2)/v2 + R2 = (v1*R2 + v2*R2)/v2
L*v2 = v1*R2 + v2*R2 = R2*(v1 + v2)
R2 = L*v2/(v1 + v2).
И т.к. w = w2, то:
w2 = v2/R2 = v2 : L*v2/(v1 + v2) = (v1 + v2)/L = (1 + 0,5)/1 = 1,5 рад/с
ответ: угловая скорость стержня равна 1,5 рад/с.