Две модели машин находятся рядом. вначале стартует первая модель с ускорением a. после этого через время t стартует вторая модель с ускорением 2а. на каком расстоянии s от места старта модели поравняются? обе модели машин едут в одну сторону.
Уравнение координаты для 1 машины: x = x0 + v0 t + (a t²)/2 уравнение координаты для 2 машины: x = a t²
первая машина за время т проедет расстояние x0 = (a т²)/2, и при этом она приобретает скорость v0 = a т
приравнивая уравнения координаты, получаем квадратное уравнение относительно t:
0.5 a t² - a т t - 0.5 a т² = 0
корни данного уравнения t(1,2) = т (1 +- √2)
вариант с минусом нам не подходит, так как время встречи в рамках задачи не может быть отрицательным. следовательно, машины встретятся в момент времени t = т (1 + √2)
из уравнения координаты для второй машины нетрудно получить, что место встречи равно
уравнение координаты для 2 машины: x = a t²
первая машина за время т проедет расстояние x0 = (a т²)/2, и при этом она приобретает скорость v0 = a т
приравнивая уравнения координаты, получаем квадратное уравнение относительно t:
0.5 a t² - a т t - 0.5 a т² = 0
корни данного уравнения t(1,2) = т (1 +- √2)
вариант с минусом нам не подходит, так как время встречи в рамках задачи не может быть отрицательным. следовательно, машины встретятся в момент времени t = т (1 + √2)
из уравнения координаты для второй машины нетрудно получить, что место встречи равно
x = a (т (1 + √2))²