Как верно заметили в комментариях, вес тела в воде уменьшается на значение силы Архимеда. Её можно выразить как Fa = p(в)gV, то есть произведение плотности воды, коэфицциента g и объёма тела. Зная, что Fa = 5 - 3 = 2 Н, выразим объём: V = 2 / (1000 * 10) = 2 * 10^-4 м^3. Из значения силы тяжести определим массу шара: F = mg => m = F/g. m = 5 / 10 = 0,5 кг. В то же время, зная объём шара и плотность железа, можно предположить, сколько бы весил наш шар, будучи чисто железным: M = pV M = 7870 * 2 * 10^-4 = 1,574 кг. Значит объёмная доля железа в шаре будет равна отнощению масс: m/M, а воздуха (считаем его невесомым) - (M - m) / M. И объём воздушной полости тогда: ((M - m) / M) * V. Подставляем числа: ((1,574 - 0,5) / 1,574 ) * 2 * 10^-4 = (1,074 / 1,574)* 2 * 10^-4 = 1,37 * 10^-4 м^3 (округлённо). Спрашивайте, если что непонятно.
Объяснение:
Дано:
m1 = l,5 кг
m2 = 3 кг
a -?
Второй закон Ньютона для первого груза
где равнодействующая сила
Проекции на оси
Y:
Сила натяжения нити
Второй закон Ньютона для второго груза
где равнодействующая сила
Проекции на оси
Y:
Тогда, подставив выражение для силы натяжения нити, получим
Ускорение тела
На блок действуют силы натяжения нити и сила, уравновещивающая силу натяжения пружины весов.
Т.к. блок находится в равновесии
Проекции на ось Y
Y:
Учитывая, что
находим показания весов
PS Обычно весы показывают вес не в ньютонах, а в килограммах. Тогда
V = 2 / (1000 * 10) = 2 * 10^-4 м^3.
Из значения силы тяжести определим массу шара:
F = mg => m = F/g.
m = 5 / 10 = 0,5 кг.
В то же время, зная объём шара и плотность железа, можно предположить, сколько бы весил наш шар, будучи чисто железным:
M = pV
M = 7870 * 2 * 10^-4 = 1,574 кг.
Значит объёмная доля железа в шаре будет равна отнощению масс: m/M, а воздуха (считаем его невесомым) - (M - m) / M.
И объём воздушной полости тогда: ((M - m) / M) * V. Подставляем числа:
((1,574 - 0,5) / 1,574 ) * 2 * 10^-4 = (1,074 / 1,574)* 2 * 10^-4 = 1,37 * 10^-4 м^3 (округлённо).
Спрашивайте, если что непонятно.