Считать будем в километрах в час для удобства.Если учитывать, что ускорения в начале и в конце пути разные, то выразим их из пути и скорости: a1=3200/S1; a2=3200/S2; Найдем общий путь: Vc=S/t; S=24 км; Запишем такую систему уравнений: 1)1/3=to+t3. to=t1+t2 2)24=S1+S2+80t3; 3)a1t1=a2t2; Опираясь на второе уравнение, выразим там все через a1t1, учитывая, что 80=a1t1; 48=a1t1(t1+2t2)-a2t2^2+2a1t1t3; 48=0.6a1t1; 0.6=t1+t2+2t3; Пришли в системе: 1)0.6=t1+t2+2t3; 2)1/3=t1+t2+t3; 1/15=t1+t2 то есть четыре минуты; Прировняем теплоту, полуденную смесью к теплоте, полученной отдельными компонентами: C(M1+2M2+3M3)delta T=1.5Rdetla T+5Rdelta T+9Rdelta T; 0.08C=129; C=1610 Дж/кг*К
Дано: S = 100 м V₁ = 10 м/с V₂ = 15 м/с t - ? Решение: Примем воду за неподвижную систему отсчета, а теплоход за подвижную систему отсчета. Тогда по закону сложения скоростей Vабс(вектор) = Vпер(вектор) + Vотн(вектор), откуда Vотн(вектор) = Vабс(вектор) - Vпер(вектор) Выполнив векторное вычитание, получим, что на пути катера к корме теплохода Vотн = V₂ - V₁, а на обратном пути Vотн = V₁ + V₂ Время до корма теплохода t₁ = S / (V₂ - V₁), а время t₂ = S / (V₁ + V₂). t = t₁ + t₂ t = S / (V₂ - V₁) + S / (V₁ + V₂) t = 100 / 5 + 100 / 25 = 20 + 4 = 24 с ответ: 24 с
S = 100 м
V₁ = 10 м/с
V₂ = 15 м/с
t - ?
Решение:
Примем воду за неподвижную систему отсчета, а теплоход за подвижную систему отсчета. Тогда по закону сложения скоростей
Vабс(вектор) = Vпер(вектор) + Vотн(вектор), откуда
Vотн(вектор) = Vабс(вектор) - Vпер(вектор)
Выполнив векторное вычитание, получим, что на пути катера к корме теплохода Vотн = V₂ - V₁, а на обратном пути Vотн = V₁ + V₂
Время до корма теплохода t₁ = S / (V₂ - V₁), а время t₂ = S / (V₁ + V₂).
t = t₁ + t₂
t = S / (V₂ - V₁) + S / (V₁ + V₂)
t = 100 / 5 + 100 / 25 = 20 + 4 = 24 с
ответ: 24 с