Для начала переведем в СИ: 500 г = 0,5 кг Распишем силы, действующие на брусок. Это сила трения скольжения, сила тяжести, сила реакции опоры и сила тяги. Т.к. движение равномерное, то ускорение отсутствует. Согласно этому запишем 2-й закон Ньютона: Fтр. + Fт. + N + mg = 0 Запишем проекции сил на ось X(она обозначена красным): Ox : Fт. - Fтр. = 0 Fт = Fтр Fтр = μN Выразим N через ось Y: Oy: N - mg = 0 N = mg Подставим это значение в формулу, указанную выше: Fт = Fтр = μ*m*g Выразим μ: μ = Fт/mg μ = 2,5 /0,5*10 = 0,5 ответ:0,5
ответ:1. Многоуровневый рычаг в целом состоит из трёх рычагов. Для того чтобы вся система находилась в состоянии равновесия, в равновесии должен находиться каждый отдельный рычаг.
На рисунке внизу видно, что всего имеется шесть плечей силы. Значения их длин необходимо определить по рисунку, приведённому в задании:
l1=2,l2=1,l3=1,l4=3,L1=4,L2=2.
2. Прежде всего имеется возможность определить массу противовеса m2, при которой верхний левый рычаг будет находиться в равновесии. Для этого необходимо использовать условие равновесия рычага: F1⋅l1=F2⋅l2.
Так как сила тяжести, создаваемая противовесом, пропорциональна его массе, то вместо силы тяжести можно использовать массу, получив таким образом:
m2=m1⋅l1l2=32⋅21=64кг.
3. Для того чтобы нижний рычаг находился в состоянии равновесия, необходимо выполнение условия: (m1+m2)⋅L1=(m3+m4)⋅L2, что позволяет узнать общую массу 3-го и 4-го противовеса:
(m3+m4)=(m1+m2)⋅L1L2=(32+64)⋅42=192кг.
4. Чтобы верхний правый рычаг находился в состоянии равновесия, общая масса m3+m4 должна распределяться обратно пропорционально плечам силы рычага, то есть:
m3m4=l4l3=31.
Таким образом получаем систему уравнений:
{m3+m4=192m3=31⋅m4
Подставляя в первое уравнение выражение для m3, из второго уравнения получаем:
31⋅m4+m4=(3+1)⋅m4=192.
После выполнения преобразований получаем:
m4=192(3+1)=48кг.
5. m3 определяют из выражения для общей массы правого верхнего рычага m3=192−m4=192−48=144кг.
Рычаг находится в равновесии, если массы противовесов равны:
500 г = 0,5 кг
Распишем силы, действующие на брусок. Это сила трения скольжения, сила тяжести, сила реакции опоры и сила тяги. Т.к. движение равномерное, то ускорение отсутствует. Согласно этому запишем 2-й закон Ньютона:
Fтр. + Fт. + N + mg = 0
Запишем проекции сил на ось X(она обозначена красным):
Ox : Fт. - Fтр. = 0
Fт = Fтр
Fтр = μN
Выразим N через ось Y:
Oy: N - mg = 0
N = mg
Подставим это значение в формулу, указанную выше:
Fт = Fтр = μ*m*g
Выразим μ:
μ = Fт/mg
μ = 2,5 /0,5*10 = 0,5
ответ:0,5
ответ:1. Многоуровневый рычаг в целом состоит из трёх рычагов. Для того чтобы вся система находилась в состоянии равновесия, в равновесии должен находиться каждый отдельный рычаг.
На рисунке внизу видно, что всего имеется шесть плечей силы. Значения их длин необходимо определить по рисунку, приведённому в задании:
l1=2,l2=1,l3=1,l4=3,L1=4,L2=2.
2. Прежде всего имеется возможность определить массу противовеса m2, при которой верхний левый рычаг будет находиться в равновесии. Для этого необходимо использовать условие равновесия рычага: F1⋅l1=F2⋅l2.
Так как сила тяжести, создаваемая противовесом, пропорциональна его массе, то вместо силы тяжести можно использовать массу, получив таким образом:
m2=m1⋅l1l2=32⋅21=64кг.
3. Для того чтобы нижний рычаг находился в состоянии равновесия, необходимо выполнение условия: (m1+m2)⋅L1=(m3+m4)⋅L2, что позволяет узнать общую массу 3-го и 4-го противовеса:
(m3+m4)=(m1+m2)⋅L1L2=(32+64)⋅42=192кг.
4. Чтобы верхний правый рычаг находился в состоянии равновесия, общая масса m3+m4 должна распределяться обратно пропорционально плечам силы рычага, то есть:
m3m4=l4l3=31.
Таким образом получаем систему уравнений:
{m3+m4=192m3=31⋅m4
Подставляя в первое уравнение выражение для m3, из второго уравнения получаем:
31⋅m4+m4=(3+1)⋅m4=192.
После выполнения преобразований получаем:
m4=192(3+1)=48кг.
5. m3 определяют из выражения для общей массы правого верхнего рычага m3=192−m4=192−48=144кг.
Рычаг находится в равновесии, если массы противовесов равны:
m2=64кг,
m3=144кг,
m4=48кг.
Объяснение: