на электрон, находящийся в электрическом поле, действует электрическая сила \( модуль которой мы определим таким образом:
\[f = ee\]
здесь \(e\) — модуль заряда электрона (элементарный заряд), равный 1,6·10-19 кл. напряженность поля между пластинами \(e\) связана с напряжением \(u\) и расстоянием между пластинами \(d\) следующей формулой:
\[e = \frac{u}{d}\]
тогда имеем:
\[f = \frac{{ue}}{d}\]
работу электрического поля \(a\) по перемещению заряда на расстояние \(s\) найдём так:
\[a = fs\]
\[a = \frac{{ues}}{d}\; \; \; \; (
также работу поля можно определить как изменение кинетической энергии электрона. так как = то:
\[a = \frac{{{m_e}{\upsilon ^2}}}{2}\; \; \; \; (
здесь \(m_e\) — масса электрона, равная 9,1·10-31 кг. теперь приравняем (1) и (2), тогда получим:
До вылета снаряда импульс судна P1=(m1+m2)*v1= 200 050*54/3,6 =3000750 кг*м/с. После выстрела геометрическая сумма импульса судна и импульса снаряда равна импульсу судна до выстрела.Импульс снаряда P2=m2*v2=50 000 кг*м/с. После выстрела импульс судна стол равен P1*P1+P2*P2-2*P1*P2*cos(120)=3026059,82 кг*м/с, откуда скорость судна после выстрела =15,13 м/с. Но вектор скорости направлен к горизонтали под углом, косинус которого равен 0,999, так что "горизонтальная" скорость судна равна 15,13*0,999=15,128 м/с. Приращение скорости составило 0,128 м/с
на электрон, находящийся в электрическом поле, действует электрическая сила \( модуль которой мы определим таким образом:
\[f = ee\]
здесь \(e\) — модуль заряда электрона (элементарный заряд), равный 1,6·10-19 кл. напряженность поля между пластинами \(e\) связана с напряжением \(u\) и расстоянием между пластинами \(d\) следующей формулой:
\[e = \frac{u}{d}\]
тогда имеем:
\[f = \frac{{ue}}{d}\]
работу электрического поля \(a\) по перемещению заряда на расстояние \(s\) найдём так:
\[a = fs\]
\[a = \frac{{ues}}{d}\; \; \; \; (
также работу поля можно определить как изменение кинетической энергии электрона. так как = то:
\[a = \frac{{{m_e}{\upsilon ^2}}}{2}\; \; \; \; (
здесь \(m_e\) — масса электрона, равная 9,1·10-31 кг. теперь приравняем (1) и (2), тогда получим:
{{{m_e}{\upsilon ^2}}}{2} = \frac{{ues}}{d}\]
нам осталось только выразить искомую скорость ):
= \sqrt {\frac{{2ues}}{{{m_e}d}}} \]
произведём вычисления:
= \sqrt {\frac{{2 \cdot 120 \cdot 1,6 \cdot {{10}^{ — 19}} \cdot 0,003}}{{9,1 \cdot {{10}^{ — 31}} \cdot 0,02}}} = 2,52 \cdot {10^6}\; м/с = 2520\; км/с\]
=3000750 кг*м/с. После выстрела геометрическая сумма импульса судна и импульса снаряда равна импульсу судна до выстрела.Импульс снаряда P2=m2*v2=50 000 кг*м/с. После выстрела импульс судна стол равен P1*P1+P2*P2-2*P1*P2*cos(120)=3026059,82 кг*м/с, откуда скорость судна после выстрела =15,13 м/с. Но вектор скорости направлен к горизонтали под углом, косинус которого равен 0,999, так что "горизонтальная" скорость судна равна 15,13*0,999=15,128 м/с. Приращение скорости составило 0,128 м/с