1) Гармони́ческие колеба́ния — колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону.
Графики функций f(x) = sin(x) (красная линия) и g(x) = cos(x) (зелёная линия) в декартовой системе координат. По оси абсцисс отложены значения полной фазы.
2)Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.
3) Собственная частота , также известная как собственная частота , - это частота, на которой система имеет тенденцию колебаться в отсутствие какой-либо движущей или демпфирующей силы. Схема движения системы, колеблющейся с собственной частотой, называется нормальным режимом (если все части системы движутся синусоидально с той же самой частотой). Если колебательная система приводится в движение внешней силой с частотой, на которой амплитуда ее движения является наибольшей (близкой к собственной частоте системы), эта частота называется резонансной частотой .
4) Негармонические колебания осуществляются в природе в системах, содержащих нелинейные элементы, которые преобразуют энергию источника в энергию колебаний.
Негармонические колебания, получающиеся в результате наложения двух одинаково направленных гармонических колебаний с близкими частотами ( to2 - ai K ( o), называются биениями.
Негармонические колебания выходят за рамки настоящей работы. Представляется, однако, целесообразным дать читателю хотя бы элементарные понятия и об этом вопросе.
5)Спектр колебаний (вибрации) — - совокупность соответствующих гармоническим составляющим значений величины, характеризующей колебания (вибрацию), в которой указанные значения располагаются в порядке возрастания частот гармонических составляющих.
6) Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки на конце невесомой нерастяжимой нити или лёгкого стержня и находящуюся в однородном поле сил тяготения. Другой конец нити (стержня) обычно неподвижен. Период малых собственных колебаний маятника длины L, подвешенного в поле тяжести, равен
Математический маятник. Чёрный пунктир — положения равновесия,
θ
\theta — угол отклонения от вертикали в некоторый момент
T
0
=
2
π
L
g
и не зависит, в первом приближении, от амплитуды колебаний и массы маятника. Здесь g — ускорение свободного падения.
Математический маятник служит простейшей моделью физического тела, совершающего колебания: она не учитывает распределение массы. Однако реальный физический маятник при малых амплитудах колеблется так же, как математический с приведённой длиной.
Сначала находим по формуле стокса скорость падения пылинок V=2\9*(r^2g(p'-p))/m r-радиус пылинок 1мкм=10^-2 м g=10 м/с^2 p-плотность воздуха в комнате(честно, плотность воздуха мне не известна, скорее всего ей можно пренебрчь и она равна 0, но это лишь предположение) p' - плотность пылинки 2.5 г/см3=2.5*10^-3/10^-6=2.5*10^3 кг\м3(но ты лучше проверь) m( это мю) - вязкость вещества, в котором находятся пылинки Это нужно либо в таблицах посмотреть, либо, если не ошибаюсь, можно пренебречь, соответственно, мю=1 Ну и подставляешь, предварительно переведя все величины в Си Потом по формуле S=Vt => t=s/v где s по условию равна 3 м
1) Гармони́ческие колеба́ния — колебания, при которых физическая величина изменяется с течением времени по гармоническому (синусоидальному, косинусоидальному) закону.
Графики функций f(x) = sin(x) (красная линия) и g(x) = cos(x) (зелёная линия) в декартовой системе координат. По оси абсцисс отложены значения полной фазы.
2)Автоколебания отличаются от вынужденных колебаний тем, что последние вызваны периодическим внешним воздействием и происходят с частотой этого воздействия, в то время как возникновение автоколебаний и их частота определяются внутренними свойствами самой автоколебательной системы.
3) Собственная частота , также известная как собственная частота , - это частота, на которой система имеет тенденцию колебаться в отсутствие какой-либо движущей или демпфирующей силы. Схема движения системы, колеблющейся с собственной частотой, называется нормальным режимом (если все части системы движутся синусоидально с той же самой частотой). Если колебательная система приводится в движение внешней силой с частотой, на которой амплитуда ее движения является наибольшей (близкой к собственной частоте системы), эта частота называется резонансной частотой .
4) Негармонические колебания осуществляются в природе в системах, содержащих нелинейные элементы, которые преобразуют энергию источника в энергию колебаний.
Негармонические колебания, получающиеся в результате наложения двух одинаково направленных гармонических колебаний с близкими частотами ( to2 - ai K ( o), называются биениями.
Негармонические колебания выходят за рамки настоящей работы. Представляется, однако, целесообразным дать читателю хотя бы элементарные понятия и об этом вопросе.
5)Спектр колебаний (вибрации) — - совокупность соответствующих гармоническим составляющим значений величины, характеризующей колебания (вибрацию), в которой указанные значения располагаются в порядке возрастания частот гармонических составляющих.
6) Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки на конце невесомой нерастяжимой нити или лёгкого стержня и находящуюся в однородном поле сил тяготения. Другой конец нити (стержня) обычно неподвижен. Период малых собственных колебаний маятника длины L, подвешенного в поле тяжести, равен
Математический маятник. Чёрный пунктир — положения равновесия,
θ
\theta — угол отклонения от вертикали в некоторый момент
T
0
=
2
π
L
g
и не зависит, в первом приближении, от амплитуды колебаний и массы маятника. Здесь g — ускорение свободного падения.
Математический маятник служит простейшей моделью физического тела, совершающего колебания: она не учитывает распределение массы. Однако реальный физический маятник при малых амплитудах колеблется так же, как математический с приведённой длиной.
V=2\9*(r^2g(p'-p))/m
r-радиус пылинок 1мкм=10^-2 м
g=10 м/с^2
p-плотность воздуха в комнате(честно, плотность воздуха мне не известна, скорее всего ей можно пренебрчь и она равна 0, но это лишь предположение)
p' - плотность пылинки
2.5 г/см3=2.5*10^-3/10^-6=2.5*10^3 кг\м3(но ты лучше проверь)
m( это мю) - вязкость вещества, в котором находятся пылинки
Это нужно либо в таблицах посмотреть, либо, если не ошибаюсь, можно пренебречь, соответственно, мю=1
Ну и подставляешь, предварительно переведя все величины в Си
Потом по формуле S=Vt => t=s/v
где s по условию равна 3 м