Чтобы расплавить свинец массой m требуется энергия Q=Q1+Q2, где Q1 - энергия, необходимая чтобы нагреть свинец до температуры плавления, а Q2 - энергия, необходимая на само плавление. Q1=C*m*(dT), где С - удельная теплоёмкость свинца, m - масса свинца, dT=Tp-T1 разница между температурой плавления (Tp) и текущей температурой свинца (T1=403 К =130 Цельсия). Q2=A*m, где A - удельная теплота плавления свинца. Эта энергия Q должна составлять 90% от кинетической энергии пули E=0.5mv^2. То есть получили уравнение 0.9*0.5mv^2=Q; Отсюда находим минимальную скорость пули: v=SQRT(Q/(0.45m)); v=SQRT((C*m*(dT)+A*m)/(0.45m)); v=SQRT((C*(dT)+A)/(0.45)); v=SQRT((C*(Tp-T1)+A)/(0.45)); Осталось подставить значения (смотри в справочнике)
В системе отсчета, связанной с конькобежцем, На него действуют силы: -сила тяжести mg, центробежная сила m(V^2)/R - обе приложены в центре тяжести -нормальная реакция, сила трения-обе приложены в точке контакта со льдом(эти силы не потребуются) Конькобежец находится в равновесии, когда равнодействующая силы тяжести и центробежной силы, проходит через точку контакта. Угол наклона этой равнодействующей и будет искомый. Теперь используем условие равновесия: сумма моментов всех сил должна быть равна нулю. Моменты находим относительно точки касания: mg*h*cosA+ [m(V^2)/R]*h*sinA=0 ctgA=(V^2)/Rg=10^2/30*10=1/3 А=72град. h-расстояние от центра тяжести до точки контакта.
Q1=C*m*(dT), где С - удельная теплоёмкость свинца, m - масса свинца, dT=Tp-T1 разница между температурой плавления (Tp) и текущей температурой свинца (T1=403 К =130 Цельсия).
Q2=A*m, где A - удельная теплота плавления свинца.
Эта энергия Q должна составлять 90% от кинетической энергии пули E=0.5mv^2. То есть получили уравнение 0.9*0.5mv^2=Q; Отсюда находим минимальную скорость пули:
v=SQRT(Q/(0.45m));
v=SQRT((C*m*(dT)+A*m)/(0.45m));
v=SQRT((C*(dT)+A)/(0.45));
v=SQRT((C*(Tp-T1)+A)/(0.45));
Осталось подставить значения (смотри в справочнике)
-сила тяжести mg, центробежная сила m(V^2)/R - обе приложены в центре тяжести
-нормальная реакция, сила трения-обе приложены в точке контакта со льдом(эти силы не потребуются)
Конькобежец находится в равновесии, когда равнодействующая силы тяжести и центробежной силы, проходит через точку контакта. Угол наклона этой равнодействующей и будет искомый.
Теперь используем условие равновесия: сумма моментов всех сил должна быть равна нулю. Моменты находим относительно точки касания:
mg*h*cosA+ [m(V^2)/R]*h*sinA=0
ctgA=(V^2)/Rg=10^2/30*10=1/3 А=72град.
h-расстояние от центра тяжести до точки контакта.