ФИЗИКА При плоском движении частицы в некоторый момент времени, когда величина скорости равна v=10^6 м/с, вектор ускорения по величине равен a=10^4 м/с^2 и образует угол A = 30градусов с вектором скорости.
а) Вычислите приращение ∆v модуля скорости частицы за последующие ∆t=0,02 с.
б) С какой угловой скоростью w вращается вектор скорости?
в) На какой угол ∆ф повернется вектор скорости частицы за последующие ∆t=0,02с?
г) Каков радиус R кривизны траектории в малой окрестности рассматриваемой точки?
1. За 10 минут (600 с) 600*Q=с*m*50 (1)
2. За x с x*Q=c*m*162, откуда х/600=162/50, x=1944 c - время нагрева от 70С до 232 С. Итого энергия подводилась в течение 10+83=93 мин = 5580 с, из которых в течении 600+1944=2544 с тело нагревалось и в течение 5580-2544=3036 с плавилось. За время плавления к телу подведена энергия Q*3036=L*m=59000*m, откуда Q=19,43*m. Подставляя это выражение в уравнение (1) и сокращая на m, получаем с=600*19,43/50=233,16 Дж/(кг*К)
По определению, сила тяжести на поверхности планеты складывается из гравитационного притяжения планеты и центробежной силы инерции, вызванной суточным вращением планеты[1][2].
Остальные силы (например, притяжение Луны и Солнца) ввиду их малости не учитывают или изучают отдельно как временные изменения гравитационного поля Земли[3][4][5].
Сила тяжести сообщает всем телам, независимо от их массы, одно и то же ускорение[6] и является консервативной силой[7].
Сила тяжести
P
→
{\vec P}, действующая на материальную точку массой
m
m, вычисляется по формуле[6]:
P
→
=
m
g
→
{\displaystyle {\vec {P}}=m{\vec {g}}}
где:
g
→
{\vec g} — ускорение, сообщаемое телу силой тяжести, которое называется ускорением свободного падения[8].
Если в пределах протяжённого тела поле сил тяжести однородно, то равнодействующая сил тяжести, действующих на элементы этого тела, приложена к центру масс тела[9].
На тела, движущиеся относительно поверхности Земли, кроме силы тяжести, также действует сила Кориолиса[10][11][12].