Тут без чертежа никак: рисуем наклонную плоскость, на ней тело и расставляем силы: сила тяги вдоль наклонной плоскости вверх, сила трения вдоль плоскости, но вниз, сила тяжести приложена к центру масс тела и направлена ВЕРТИКАЛЬНО вниз, сила реакции опоры приложена к центру масс тела но ВДОЛЬ ПЕРПЕНДИКУЛЯРА К НАКЛОННОЙ ПЛОСКОСТИ. ось ОХ направляем вдоль наклонной плоскости вверх, ось ОУ вдоль вектора силы реакции опоры вверх, угол α=30 угол у основания наклонной плоскости. Теперь нам надо записать 2 закон Ньютона в векторном виде: → → → → → → Fтяг+Fтр+mg+N=ma, теперь нам надо найти проекции этих сил на координатные оси ОХ: Fтяг-Fтр - mg sinα=ma (сила трения имеет отрицательную проекцию, тк. она направлена "против" оси ОХ, mg отрицательна т.к. идем от начала проекции к концу против направления оси, а если опустить перпендикуляр из конца вектора на ОХ то получим, что угол 30 будет лежать напротив проекции, т.е сам вектор при этом будет равен mg sinα) Теперь аналогично находим проекции всех векторов на ОУ: 0+0-mg cosα+N=0 отсюда находим, что N=mg cosα, вспоминаем, что Fтр=μN=μ mg cosα, осталось все собрать в кучу, получаем: Fтяг- μ mg cosα - mg sinα=ma отсюда a=(Fтяг -μ mg cosα -mg sinα)/m=(7000-0,1*1000*10*√3/2 - 1000*10*1/2)/1000=(6150-5000)/1000=1150/1000=1,15 м/с.кв.
При равноускоренном движении v=v0+a*t, s=v0*t+a*t*t/2, где а - ускорение. за время набора скорости от 17 км/ до 73 км/ч поезд двойную длину моста, т.е. 700 м. Получаем систему уравнение (скорость v0 переведена в м\с): 1) (17/3,6)*t+a*t*t/2=700 2) 17/3,6+a*t=73/3,6 Умножив оба уравнения на 18, получим: 1) 85*t+9*a*t*t=12600 2) 85+18*a*t=365 Из второго уравнения находим а=140/(9*t). Подставляя это выражение в первое уравнение, получим уравнение 85*t+140*t=12600, откуда время прохода всего поезда по мосту t=56c.Но пассажир находился на мосту лишь половину этого времени. т.е. 28с. ответ: 28с.
Теперь нам надо записать 2 закон Ньютона в векторном виде: →
→ → → → →
Fтяг+Fтр+mg+N=ma, теперь нам надо найти проекции этих сил на координатные оси ОХ: Fтяг-Fтр - mg sinα=ma (сила трения имеет отрицательную проекцию, тк. она направлена "против" оси ОХ, mg отрицательна т.к. идем от начала проекции к концу против направления оси, а если опустить перпендикуляр из конца вектора на ОХ то получим, что угол 30 будет лежать напротив проекции, т.е сам вектор при этом будет равен mg sinα)
Теперь аналогично находим проекции всех векторов на ОУ: 0+0-mg cosα+N=0 отсюда находим, что N=mg cosα, вспоминаем, что Fтр=μN=μ mg cosα, осталось все собрать в кучу, получаем: Fтяг- μ mg cosα - mg sinα=ma отсюда a=(Fтяг -μ mg cosα -mg sinα)/m=(7000-0,1*1000*10*√3/2 - 1000*10*1/2)/1000=(6150-5000)/1000=1150/1000=1,15 м/с.кв.
за время набора скорости от 17 км/ до 73 км/ч поезд двойную длину моста, т.е. 700 м. Получаем систему уравнение (скорость v0 переведена в м\с):
1) (17/3,6)*t+a*t*t/2=700
2) 17/3,6+a*t=73/3,6
Умножив оба уравнения на 18, получим:
1) 85*t+9*a*t*t=12600
2) 85+18*a*t=365
Из второго уравнения находим а=140/(9*t). Подставляя это выражение в первое уравнение, получим уравнение 85*t+140*t=12600, откуда время прохода всего поезда по мосту t=56c.Но пассажир находился на мосту лишь половину этого времени. т.е. 28с.
ответ: 28с.