Физика. Условия равновесия тела 1.Груз массой 5 кг подвешен на трех тросах (рис. 35.1). Чему равна сила натяжения второго и третьего троса, если
a) а=30 градусам
б) a=60 градусам
2.Лестница OA опирается на гладкую стену (рис 35.2) и находится в покое. Угол наклона лестницы к вертикали равен a, длина лестницы l. Точка приложения силы тяжести совпадает с серединой лестницы.
а) Чему равно плечо силы тяжести относительно точек A, О, B?
б) Чему равно плечо действующей на лестницу со стороны пола силы трения относительно точек А, О, В?
в) Чему равно плечо действующей на лестницу со стороны пола силы нормальной реакции относительно точек A, O, B?
Значение : большинство людей, изучающих основы , в будущем не собираются стать . некоторые будут работать либо в области , либо в смежных областях, в технике или области других наук. независимо от того, в какой области вы собираетесь трудиться в дальнейшем, знания о природе, наблюдаемой глазами , вам понять изменения, происходящие в окружающем вас мире.что такое ? дает возможность ответить на эти и другие вопросы. она позволяет предсказывать и строить новое, понимать и проникнуть в неизвестное. из того, что мы узнаем в , формируются новые представления, воспроизводятся новые явления. говоря о роли , выделим три основных момента. во-первых, является для человека важнейшим источником знания об окружающем мире. во-вторых, , не прерывно расширяя и многократно умножая возможности человека, обеспечивает его уверенное продвижения по пути технического прогресса. в-третьих, вносит существенный вклад в развития духовного облика человека, формирует его мировоззрение, учит ориентироваться в шкале культурных ценностей. поэтому можно говорить соответственно о научном, техническом и гуманитарном потенциалах . эти три потенциала содержались в всегда. но особенно ярко и весомо они проявились в хх столетия, что и предопределило ту исключительно важную роль, какую стала играть в современном мире.
Под средней длиной свободного пробега понимают среднее расстояние, которое проходит молекула между двумя последовательными соударениями. за секунду молекула в среднем проходит расстояние, численно равное ее средней скорости . если за это же время она испытает в среднем столкновений с другими молекулами, то ее средняя длина свободного пробега , очевидно, будет равна (3.1.1) предположим, что все молекулы, кроме рассматриваемой, неподвижны. молекулы будем считать шарами с диаметром d. столкновения будут происходить всякий раз, когда центр неподвижной молекулы окажется на расстоянии меньшем или равном d от прямой, вдоль которой двигается центр рассматриваемой молекулы. при столкновениях молекула изменяет направление своего движения и затем движется прямолинейно до следующего столкновения. поэтому центр движущейся молекулы ввиду столкновений движется по ломаной линии (рис. 1). рис. 1 молекула столкнется со всеми неподвижными молекулами, центры которых находятся в пределах ломаного цилиндра диаметром 2d. за секунду молекула проходит путь, равный . поэтому число происходящих за это время столкновений равно числу молекул, центры которых внутрь ломаного цилиндра, имеющего суммарную длину и радиус d. его объем примем равным объему соответствующего спрямленного цилиндра, т. е. равным если в единице объема газа находится n молекул, то число столкновений рассматриваемой молекулы за одну секунду будет равно (3.1.2) в действительности движутся все молекулы. поэтому число столкновений за одну секунду будет несколько большим полученной величины, так как вследствие движения окружающих молекул рассматриваемая молекула испытала бы некоторое число соударений даже в том случае, если бы она сама оставалась неподвижной. предположение о неподвижности всех молекул, с которыми сталкивается рассматриваемая молекула, будет снято, если в формулу (3.1.2) вместо средней скорости представить среднюю скорость относительного движения рассматриваемой молекулы. в самом деле, если налетающая молекула движется со средней относительной скоростью , то молекула, с которой она сталкивается, оказывается покоящейся, что и предполагалось при получении формулы (3.1.2). поэтому формулу (3.1.2) следует написать в виде: (3.1.3) предположим, что скорости молекул до столкновения были и тогда из треугольника скоростей имеем (рис. 2) (3.1.4) так как углы и скорости и , с которыми сталкиваются молекулы, очевидно, являются независимыми случайными величинами, то среднее рис. 2 от произведения этих величин равно произведению их средних. поэтому (3.1.5) с учетом последнего равенства формулу (3.1.4) можно переписать в виде: (3.1.6) так как cредняя квадратичная скорость пропорциональна средней скорости, (3.1.7) т. е. .поэтому соотношение (3.1.6) можно представить так: (3.1.8) с учетом последнего выражения формула для средней длины свободного пробега приобретает вид: (3.1.9) для идеального газа . поэтому (3.1.10) отсюда видно, что при изотермическом расширении (сжатии) средняя длина свободного пробега растет (убывает).как было отмечено во введении, эффективный диаметр молекул убывает с ростом температуры. поэтому при заданной концентрации молекул средняя длина свободного пробега увеличивается с ростом температуры. вычисление средней длины свободного пробега для азота (d = 3•10-10 м), находящегося при нормальных условиях (р = 1,01•105 па, т = 273,15 к) дает: , а для числа столкновений за одну секунду: . таким образом, средняя длина свободного пробега молекул при нормальных условиях составляет доли микрон, а число столкновений – несколько миллиардов в секунду. поэтому процессы выравнивания температур (теплопроводность), скоростей движения слоев газа (вязкое трение) и концентраций (диффузия) являются достаточно медленными, что подтверждается опытом.