Полная механическая энергия тела равна сумме его кинетической и потенциальной энергии.
Полную механическую энергию рассматривают в тех случаях, когда действует закон сохранения энергии и она остаётся постоянной.
Если на движение тела не оказывают влияния внешние силы, например, нет взаимодействия с другими телами, нет силы трения или силы сопротивления движению, тогда полная механическая энергия тела остаётся неизменной во времени.
Eпот+Eкин=const
Разумеется, что в повседневной жизни не существует идеальной ситуации, в которой тело полностью сохраняло бы свою энергию, так как любое тело вокруг нас взаимодействует хотя бы с молекулами воздуха и сталкивается с сопротивлением воздуха. Но, если сила сопротивления очень мала и движение рассматривается в относительно коротком промежутке времени, тогда такую ситуацию можно приближённо считать теоретически идеальной.
Закон сохранения полной механической энергии обычно применяют при рассмотрении свободного падения тела, при его вертикальном подбрасывании или в случае колебаний тела.
Пример:
При вертикальном подбрасывании тела его полная механическая энергия не меняется, а кинетическая энергия тела переходит в потенциальную и наоборот.
Преобразование энергии отображено на рисунке и в таблице.
2 (1).svg
Точка нахождения тела
Потенциальная энергия
Кинетическая энергия
Полная механическая энергия
3) Самая верхняя
(h = max)
Eпот = m⋅g⋅h (max)
Eкин = 0
Eполная = m⋅g⋅h
2) Средняя
(h = средняя)
Eпот = m⋅g⋅h
Eкин = m⋅v22
Eполная = m⋅v22 + m⋅g⋅h
1) Самая нижняя
(h = 0)
Eпот = 0
Eкин = m⋅v22 (max)
Eполная = m⋅v22
Исходя из того, что в начале движения величина кинетической энергии тела одинакова с величиной его потенциальной энергии в верхней точке траектории движения, для расчётов могут быть использованы ещё две формулы.
Если известна максимальная высота, на которую поднимается тело, тогда можно определить максимальную скорость движения по формуле:
vmax=2⋅g⋅hmax−−−−−−−−−√ .
Если известна максимальная скорость движения тела, тогда можно определить максимальную высоту, на которую поднимается тело, брошенное вверх, по такой формуле:
hmax=v2max2g .
Видео: «Демонстрация изменения кинетической и потенциальной энергии тела при подвеса»
Чтобы отобразить преобразование энергии графически, можно использовать имитацию «Энергия в скейт-парке», в которой человек, катающийся на роликовой доске (скейтер) перемещается по рампе. Чтобы изобразить идеальный случай, предполагается, что не происходит потерь энергии в связи с трением. На рисунке показана рампа со скейтером, и далее на графике показана зависимость механической энергии от места положения скейтера на траектории.
3 (1).svg
На графике синей пунктирной линией показано изменение потенциальной энергии. В средней точке рампы потенциальная энергия равна нулю . Зелёной пунктирной линией показано изменение кинетической энергии. В верхних точках рампы кинетическая энергия равна нулю . Жёлто-зелёная линия изображает полную механическую энергию — сумму потенциальной и кинетической — в каждый момент движения и в каждой точке траектории. Как видно, она остаётся неизменной во всё время движения. Частота точек характеризует скорость движения — чем дальше точки расположены друг от друга, тем больше скорость движения.
4.svg
На графике видно, что значение потенциальной энергии в начальной точке совпадает со значением кинетической энергии в середине рампы.
В реальной ситуации всегда происходят потери энергии, так как часть энергии выделяется в виде тепла под влиянием сил трения и сопротивления.
Поэтому для того, чтобы автомобиль двигался с равномерной и неизменной скоростью, необходимо постоянно подводить дополнительную энергию, которая компенсировала бы энергетические потери.
Масса Земли - 5.97*10^24 кг; Масса Луны - 7.34*10^22 кг; Расстояние от Луны до Земли - 384400 км = 384.4*10^6 м;
Сила притяжения имеет формулу: F=GmM/r^2; G=6.67*10^-11 - гравитационная постоянная; m - масса тела; M - масса Земли/Луны; r - расстояние от тела до Земли/Луны; r1 - искомое.
Приравниваем силу притяжение к Земли и к Луне: F1=F2; GmM1/r1^2=GmM2/r2^2; M1/r1^2=M2/r2^2; r1+r2=r - расстояние от Земли до Луны; r2=r-r1; M1/r1^2=M2/(r-r1)^2; M2r1^2=M1(r-r1)^2; M2r1^2=M1r^2+M1r1^2-2M1rr1; r1^2*(M1-M2)-r1*2M1r+M1r^2=0; Решаем квадратное уравнение: D=4M1M2r^2; r1 = (M1r - r*корень(M1M2))/(M1-M2) = (r((M1 - корень(M1M2)))/(M1-M2); Подставим значения ( M1 - масса Земли, M2 - масса Луны, r - расстояние между Землей и Луной). Если посчитать, получится 346928 км. ответ:346928 км.
Надеюсь, нигде не напортачил ;)
Можно решить гораздо проще) M1/M2 = r1^2/r2^2; r2 = r-r1; корень(M1/M2) = r1/r2; корень(M1/M2) = 9; 9 = r1/r2; 9r2=r1; 9r=10r1; r1=0.9 r=345960 м. ответ:345960 м.
2100
Объяснение:
Полная механическая энергия тела равна сумме его кинетической и потенциальной энергии.
Полную механическую энергию рассматривают в тех случаях, когда действует закон сохранения энергии и она остаётся постоянной.
Если на движение тела не оказывают влияния внешние силы, например, нет взаимодействия с другими телами, нет силы трения или силы сопротивления движению, тогда полная механическая энергия тела остаётся неизменной во времени.
Eпот+Eкин=const
Разумеется, что в повседневной жизни не существует идеальной ситуации, в которой тело полностью сохраняло бы свою энергию, так как любое тело вокруг нас взаимодействует хотя бы с молекулами воздуха и сталкивается с сопротивлением воздуха. Но, если сила сопротивления очень мала и движение рассматривается в относительно коротком промежутке времени, тогда такую ситуацию можно приближённо считать теоретически идеальной.
Закон сохранения полной механической энергии обычно применяют при рассмотрении свободного падения тела, при его вертикальном подбрасывании или в случае колебаний тела.
Пример:
При вертикальном подбрасывании тела его полная механическая энергия не меняется, а кинетическая энергия тела переходит в потенциальную и наоборот.
Преобразование энергии отображено на рисунке и в таблице.
2 (1).svg
Точка нахождения тела
Потенциальная энергия
Кинетическая энергия
Полная механическая энергия
3) Самая верхняя
(h = max)
Eпот = m⋅g⋅h (max)
Eкин = 0
Eполная = m⋅g⋅h
2) Средняя
(h = средняя)
Eпот = m⋅g⋅h
Eкин = m⋅v22
Eполная = m⋅v22 + m⋅g⋅h
1) Самая нижняя
(h = 0)
Eпот = 0
Eкин = m⋅v22 (max)
Eполная = m⋅v22
Исходя из того, что в начале движения величина кинетической энергии тела одинакова с величиной его потенциальной энергии в верхней точке траектории движения, для расчётов могут быть использованы ещё две формулы.
Если известна максимальная высота, на которую поднимается тело, тогда можно определить максимальную скорость движения по формуле:
vmax=2⋅g⋅hmax−−−−−−−−−√ .
Если известна максимальная скорость движения тела, тогда можно определить максимальную высоту, на которую поднимается тело, брошенное вверх, по такой формуле:
hmax=v2max2g .
Видео: «Демонстрация изменения кинетической и потенциальной энергии тела при подвеса»
Чтобы отобразить преобразование энергии графически, можно использовать имитацию «Энергия в скейт-парке», в которой человек, катающийся на роликовой доске (скейтер) перемещается по рампе. Чтобы изобразить идеальный случай, предполагается, что не происходит потерь энергии в связи с трением. На рисунке показана рампа со скейтером, и далее на графике показана зависимость механической энергии от места положения скейтера на траектории.
3 (1).svg
На графике синей пунктирной линией показано изменение потенциальной энергии. В средней точке рампы потенциальная энергия равна нулю . Зелёной пунктирной линией показано изменение кинетической энергии. В верхних точках рампы кинетическая энергия равна нулю . Жёлто-зелёная линия изображает полную механическую энергию — сумму потенциальной и кинетической — в каждый момент движения и в каждой точке траектории. Как видно, она остаётся неизменной во всё время движения. Частота точек характеризует скорость движения — чем дальше точки расположены друг от друга, тем больше скорость движения.
4.svg
На графике видно, что значение потенциальной энергии в начальной точке совпадает со значением кинетической энергии в середине рампы.
В реальной ситуации всегда происходят потери энергии, так как часть энергии выделяется в виде тепла под влиянием сил трения и сопротивления.
Поэтому для того, чтобы автомобиль двигался с равномерной и неизменной скоростью, необходимо постоянно подводить дополнительную энергию, которая компенсировала бы энергетические потери.
Масса Луны - 7.34*10^22 кг;
Расстояние от Луны до Земли - 384400 км = 384.4*10^6 м;
Сила притяжения имеет формулу: F=GmM/r^2;
G=6.67*10^-11 - гравитационная постоянная;
m - масса тела;
M - масса Земли/Луны;
r - расстояние от тела до Земли/Луны;
r1 - искомое.
Приравниваем силу притяжение к Земли и к Луне:
F1=F2;
GmM1/r1^2=GmM2/r2^2;
M1/r1^2=M2/r2^2;
r1+r2=r - расстояние от Земли до Луны;
r2=r-r1;
M1/r1^2=M2/(r-r1)^2;
M2r1^2=M1(r-r1)^2;
M2r1^2=M1r^2+M1r1^2-2M1rr1;
r1^2*(M1-M2)-r1*2M1r+M1r^2=0;
Решаем квадратное уравнение:
D=4M1M2r^2;
r1 = (M1r - r*корень(M1M2))/(M1-M2) = (r((M1 - корень(M1M2)))/(M1-M2);
Подставим значения ( M1 - масса Земли, M2 - масса Луны, r - расстояние между Землей и Луной). Если посчитать, получится 346928 км.
ответ:346928 км.
Надеюсь, нигде не напортачил ;)
Можно решить гораздо проще)
M1/M2 = r1^2/r2^2;
r2 = r-r1;
корень(M1/M2) = r1/r2;
корень(M1/M2) = 9;
9 = r1/r2;
9r2=r1;
9r=10r1;
r1=0.9 r=345960 м.
ответ:345960 м.