В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
all271
all271
24.02.2021 09:47 •  Физика

(Фото нормального текста прикреплено) Бесконечный цилиндр радиусом R=0,1м, заряжен с плотностью заряда 1/ 2   cr , где с=10 нКл/м7/2 , rрасстояние до оси цилиндра. Используя теорему Гаусса найти напряженность электростатического поля на расстоянии L1=0,05 м и L2=0,3 от оси цилиндра. Построить график E(r).


(Фото нормального текста прикреплено) Бесконечный цилиндр радиусом R=0,1м, заряжен с плотностью зар

Показать ответ
Ответ:
lisafoxxxxxxxx
lisafoxxxxxxxx
20.01.2024 20:17
Для решения данной задачи воспользуемся теоремой Гаусса, которая утверждает, что поток электрического поля через замкнутую поверхность равен сумме зарядов, находящихся внутри этой поверхности, разделенная на электрическую постоянную.

Найдем сначала электрическое поле на расстоянии L1 = 0,05 м от оси цилиндра. Для этого мы выберем замкнутую поверхность в форме цилиндра с радиусом r и высотой h, где h мало превышает L1 (объем внутри такого цилиндра не содержит заряд). Поверхность должна быть перпендикулярна оси цилиндра, чтобы использовать симметрию задачи.

Тогда поток электрического поля через эту поверхность будет:

Φ = E * S,

где S - площадь боковой поверхности цилиндра.

Величина заряда в объеме цилиндра будет:

dq = ρ * dV = ρ * S * dr,

где dV - объем элемента цилиндра, а dr - шаг изменения радиуса.

Тогда поток электрического поля можно выразить через шаг изменения радиуса:

dΦ = E * S * dr.

Суммируем потоки электрического поля за весь объем цилиндра:

Φ = ∫dΦ = ∫E * S * dr,

где интегрирование проводится от радиуса R до радиуса r.

Так как наш цилиндр бесконечный, то мы можем провести предельный переход:

Φ = ∫E(r) * S * dr = E * S * Δr,

где Δr = r - R.

Теперь можем подставить значения площади боковой поверхности цилиндра и площади S = 2πrh, где r = R + Δr, а h - высота цилиндра:

Φ = E * 2πrh * Δr.

Выразим E:

E = Φ / (2πrhΔr).

Теперь можем вычислить поток через замкнутую поверхность цилиндра:

Φ = q(encl) / ε0,

где q(encl) - заряд внутри поверхности, а ε0 - электрическая постоянная.

Заряд внутри поверхности может быть выражен через плотность заряда и объем внутри цилиндра:

q(encl) = ρ * V,

где V = πR^2h - объем цилиндра.

Расстояние L1 является малым, поэтому высоту цилиндра h можем взять равной L1.

Теперь можем выразить поток через замкнутую поверхность цилиндра:

Φ = ρ * πR^2L1 / ε0.

Подставим это значение в формулу для электрического поля:

E(L1) = ρ * πR^2L1 / (2πRL1Δr)

Сократим с π и L1:

E(L1) = ρ * R / (2RΔr)

Simplify:

E(L1) = ρ / (2Δr).

Теперь можем вычислить электрическое поле на расстоянии L1 = 0,05 м:

Δr = r - R = 0,05 м - 0,1 м = -0,05 м.

E(L1) = ρ / (2Δr) = (10 нКл/м7/2) / (2 * (-0,05 м)) = -100 нКл/м6/2.

Заметим, что получилось отрицательное значение поля, это говорит о том, что направление поля направлено к оси цилиндра.

Теперь вычислим электрическое поле на расстоянии L2 = 0,3 м.

Аналогично можно вычислить шаг изменения радиуса:

Δr = r - R = 0,3 м - 0,1 м = 0,2 м.

Теперь можем подставить значение шага и плотности заряда в формулу для электрического поля:

E(L2) = ρ / (2Δr) = (10 нКл/м7/2) / (2 * 0,2 м) = 25 нКл/м6/2.

Заметим, что получилось положительное значение поля, это говорит о том, что направление поля направлено от оси цилиндра.

Теперь давайте построим график E(r) для расстояний от 0,05 м до 0,3 м от оси цилиндра.

(На графике будет ось X с расстояниями от 0,05 м до 0,3 м и ось Y с значениями электрической напряженности поля)

Из графика мы можем увидеть, что начиная с расстояния L1 = 0,05 м, электрическое поле имеет отрицательное направление и ослабевает по мере удаления от оси цилиндра. При расстоянии L2 = 0,3 м поле также ослабевает, но имеет положительное направление.

Таким образом, мы нашли значения электрической напряженности поля на расстояниях L1 и L2 от оси цилиндра с помощью теоремы Гаусса и построили график E(r).
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота