Гальванічний елемент з ЕРС Е і внутрішнім опором r замикають на зовнішнє коло опору R. Визначити різницю потенціалів U на клемах елемента, якщо на зовнішньому опорі виділяється потужність Р.
Если тело свободно падает с некоторой высоты h, измерьте ее при дальномера или любого другого при Рассчитайте скорость падения тела v, найдя корень квадратный из произведения ускорения свободного падения на высоту и число 2, v=√(2∙g∙h). Если перед началом отсчета времени тело уже имело скорость v0, то к получившемуся результату прибавьте ее значение v=√(2∙g∙h)+v0. 2 Пример. Тело свободно падает с высоты 4 м при нулевой начальной скорости. Какова будет его скорость при достижении земной поверхности? Рассчитайте скорость падения тела по формуле, учитывая, что v0=0. Произведите подстановку v=√(2∙9,81∙4)≈8,86 м/с. 3 Измерьте время падения тела t электронным секундомером в секундах. Найдите его скорость в конце отрезка времени, которое продолжалось движение прибавив к начальной скорости v0 произведения времени на ускорение свободного падения v=v0+g∙t. 4 Пример. Камень начал падение с начальной скоростью 1 м/с. Найдите его скорость через 2 с. Подставьте значения указанных величин в формулу v=1+9,81∙2=20,62 м/с. 5 Рассчитайте скорость падения тела, брошенного горизонтально. В этом случае его движение является результатом двух типов движения, в которых одновременно принимает участие тело. Это равномерное движение по горизонтали и равноускоренное - по вертикали. В результате траектория тела имеет вид параболы. Скорость тела в любой момент времени будет равна векторной сумме горизонтальной и вертикальной составляющей скорости. Поскольку угол между векторами этих скоростей всегда прямой, то для определения скорости падения тела, брошенного горизонтально, воспользуйтесь теоремой Пифагора. Скорость тела будет равна корню квадратному из суммы квадратов горизонтальной и вертикальной составляющих в данный момент времени v=√(v гор²+ v верт²). Вертикальную составляющую скорости рассчитывайте по методике, изложенной в предыдущих пунктах. 6 Пример. Тело брошено горизонтально с высоты 6 м со скоростью 4 м/с. Определите его скорость при ударе о землю. Найдите вертикальную составляющую скорости при ударе о землю. Она будет такой же, как если бы тело свободно падало с заданной высоты v верт =√(2∙g∙h). Подставьте значение в формулу и получите v=√(v гор²+ 2∙g∙h)= √(16+ 2∙9,81∙6)≈11,56 м/с.
Студент от начала состава вглубь него несколько десятков метров. Значит, в тот момент времени, когда он увидел в окне окончание проезжаемого моста, т.е. через секунд от начала отсчёта времени – нос электрички уже был высунут за пределы моста на эти самые несколько десятков метров. Т.е. понятно, что нос электрички достиг окончания моста МЕНЕЕ ЧЕМ ЗА секунд!
В то же время, понятно, что в самом начале отсчёта времени – студент находился вприжимку к носу электрички (внутри неё), а значит, она начала въезжать на мост как раз в начале отсчёта времени.
Теперь, рассчитаем задачу строго, по законам физики:
Согласно принципу относительности Галилея: «для того, чтобы найти вектор скорости тела относительно земли, нужно к вектору его скорости относительно транспорта прибавить вектор скорости транспорта».
В частности, в случае движения вдоль одной линии, принцип Галилея упрощается: «для того, чтобы найти проекцию скорости тела относительно земли, нужно к проекции его скорости относительно транспорта прибавить проекцию скорости транспорта».
Электричка движется вперёд со скоростью км/ч .
Студент относительно электрички движется НАЗАД (!) со скоростью км/ч .
Скорость студента относительно земли равна алгебраической сумме проекций км/ч км/ч км/ч .
Как следует из условия, в начале отсчёта времени студент находился точно на уровне начала моста, а в конце отсчёта времени – точно на уровне конца моста. Отсюда следует, что ровно за секунд часа часа часа, студент относительно земли переместился точно на длину моста. Найдём длину моста км/час часа км м .
Для ответа на поставленный в задаче вопрос нужно понять, в чём заключается этот вопрос. Взглянем на чертёж, приложенный к задаче. Из него легко понять, что от того момента времени, когда первый (!) вагон электрички начал въезжать на мост до того момента, как последний (!) вагон выехал с моста – всё это время электричка находилась на мосту. А значит за время, пока электричка находилась на мосту, она проехала ДВОЙНУЮ длину моста м .
Чтобы найти время в течение которого ВСЯ электричка проезжала по мосту, разделим путь, который она проделала за это время на её скорость:
сек сек сек сек сек .
О т в е т : полное время нахождения электрички на мосту, т.е., когда хотя бы какая-то её часть находилась на мосту, это и будет время, в течение которого электричка проехала мост. Это время сек .
2
Пример. Тело свободно падает с высоты 4 м при нулевой начальной скорости. Какова будет его скорость при достижении земной поверхности? Рассчитайте скорость падения тела по формуле, учитывая, что v0=0. Произведите подстановку v=√(2∙9,81∙4)≈8,86 м/с.
3
Измерьте время падения тела t электронным секундомером в секундах. Найдите его скорость в конце отрезка времени, которое продолжалось движение прибавив к начальной скорости v0 произведения времени на ускорение свободного падения v=v0+g∙t.
4
Пример. Камень начал падение с начальной скоростью 1 м/с. Найдите его скорость через 2 с. Подставьте значения указанных величин в формулу v=1+9,81∙2=20,62 м/с.
5
Рассчитайте скорость падения тела, брошенного горизонтально. В этом случае его движение является результатом двух типов движения, в которых одновременно принимает участие тело. Это равномерное движение по горизонтали и равноускоренное - по вертикали. В результате траектория тела имеет вид параболы. Скорость тела в любой момент времени будет равна векторной сумме горизонтальной и вертикальной составляющей скорости. Поскольку угол между векторами этих скоростей всегда прямой, то для определения скорости падения тела, брошенного горизонтально, воспользуйтесь теоремой Пифагора. Скорость тела будет равна корню квадратному из суммы квадратов горизонтальной и вертикальной составляющих в данный момент времени v=√(v гор²+ v верт²). Вертикальную составляющую скорости рассчитывайте по методике, изложенной в предыдущих пунктах.
6
Пример. Тело брошено горизонтально с высоты 6 м со скоростью 4 м/с. Определите его скорость при ударе о землю. Найдите вертикальную составляющую скорости при ударе о землю. Она будет такой же, как если бы тело свободно падало с заданной высоты v верт =√(2∙g∙h). Подставьте значение в формулу и получите v=√(v гор²+ 2∙g∙h)= √(16+ 2∙9,81∙6)≈11,56 м/с.
Студент от начала состава вглубь него несколько десятков метров. Значит, в тот момент времени, когда он увидел в окне окончание проезжаемого моста, т.е. через секунд от начала отсчёта времени – нос электрички уже был высунут за пределы моста на эти самые несколько десятков метров. Т.е. понятно, что нос электрички достиг окончания моста МЕНЕЕ ЧЕМ ЗА секунд!
В то же время, понятно, что в самом начале отсчёта времени – студент находился вприжимку к носу электрички (внутри неё), а значит, она начала въезжать на мост как раз в начале отсчёта времени.
Теперь, рассчитаем задачу строго, по законам физики:
Согласно принципу относительности Галилея: «для того, чтобы найти вектор скорости тела относительно земли, нужно к вектору его скорости относительно транспорта прибавить вектор скорости транспорта».
В частности, в случае движения вдоль одной линии, принцип Галилея упрощается: «для того, чтобы найти проекцию скорости тела относительно земли, нужно к проекции его скорости относительно транспорта прибавить проекцию скорости транспорта».
Электричка движется вперёд со скоростью км/ч .
Студент относительно электрички движется НАЗАД (!) со скоростью км/ч .
Скорость студента относительно земли равна алгебраической сумме проекций км/ч км/ч км/ч .
Как следует из условия, в начале отсчёта времени студент находился точно на уровне начала моста, а в конце отсчёта времени – точно на уровне конца моста. Отсюда следует, что ровно за секунд часа часа часа, студент относительно земли переместился точно на длину моста. Найдём длину моста км/час часа км м .
Для ответа на поставленный в задаче вопрос нужно понять, в чём заключается этот вопрос. Взглянем на чертёж, приложенный к задаче. Из него легко понять, что от того момента времени, когда первый (!) вагон электрички начал въезжать на мост до того момента, как последний (!) вагон выехал с моста – всё это время электричка находилась на мосту. А значит за время, пока электричка находилась на мосту, она проехала ДВОЙНУЮ длину моста м .
Чтобы найти время в течение которого ВСЯ электричка проезжала по мосту, разделим путь, который она проделала за это время на её скорость:
сек сек сек сек сек .
О т в е т : полное время нахождения электрички на мосту, т.е., когда хотя бы какая-то её часть находилась на мосту, это и будет время, в течение которого электричка проехала мост. Это время сек .