Если ты о дани афинян критянам, то тут модно углубится в миф один. по легенде, раз в 9 лет афиняне платили непосильную дань - 14 юношей и девушек. как раз ,у критского царя миноса было чудовище минотавр. это был огромный человек с головой быка. в афинах, по легенде, правил царь эгей. у этого царя был сын тесей. но тут афиняне вознегодовали ( ведь тесей был защищён от жребия, в результате которого юноши и девушки должны были отправится в крит на их съедение) и тесей решил, что поедет вместе с остальными на крит. там он встретил и полюбил дочь миноса - ариадну. это чувство было взаимным. вскоре она дала тесею магическую нить, которая может вывести их из лабиринта ( лабиринт - место обитание минотавра). 14 юношей и девушек, в том числе и тесей, вошли в лабиринт. вскоре там повстречали минотавра и тесей его убил. он с ариадной и другими жителями афин поплыл к себе. у тесея был уговор с отцом: если тесей умрёт - паруса будут чёрными, а если он победит - белые паруса будут развеватся на ветру. но наш герой, очарованный ариадной, забыл выставить белые паруса. его отец эгей увидел чёрные паруса и сбросился со скалы. да и ариадну вскоре дионис похитил ( по другим версиям мифа он сам её выбросил за борт). а может, она осталась жива. версий этого мифа итак, дань афинян критянам: 14 юношей и девушек.
1. Импульс момента силы, Mdt, действующий на вращательное тело, равен изменению его момента импульса dL: Mdt = d(Jω) или Mdt = dL Где: Mdt – импульс момента силы (произведение момента силы М на промежуток времени dt) Jdω = d(Jω) – изменение момента импульса тела, Jω = L - момент импульса тела есть произведение момента инерции J на угловую скоростьω ω, а d(Jω) есть dL.
2. Кинематические характеристики Вращение твердого тела, как целого характеризуется углом φ, измеряющегося в угловых градусах или радианах, угловой скоростью ω = dφ/dt (измеряется в рад/с) и угловым ускорением ε = d²φ/dt² (измеряется в рад/с²). При равномерном вращении (T оборотов в секунду), Частота вращения — число оборотов тела в единицу времени: f = 1/T = ω/2 Период вращения — время одного полного оборота. Период вращения T и его частота f связаны соотношением T = 1/f
Линейная скорость точки, находящейся на расстоянии R от оси вращения
Угловая скорость вращения тела ω = f/Dt = 2/T
Динамические характеристики Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергии вращения можно записать в виде: E=
В этой формуле момент инерции играет роль массы, а угловая скорость роль обычной скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы:
Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси: =∑
где: mi — масса i-й точки, ri — расстояние от i-й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.
3. Маятник представляет собой замкнутую систему. Если маятник находится в крайней точке, его потенциальная энергия максимальна, а кинетическая равна нулю. Как только маятник начинает двигаться, егопотенциальная энергия уменьшается, а кинетическая - увеличивается. В нижней точке кинетическая энергия максимальна, а потенциальная - минимальна. После этого начинается обратный процесс. Накопленная кинетическая энергия двигает маятник вверх и увеличивает, тем самым потенциальную энергию маятника. Кинетическая энергия уменьшается, пока маятник снова не остановится уже в другой крайней точке. Можно сказать, что в процессе движения маятника происходит переход потенциальной энергии в кинетическую и наоборот.
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной. Или так: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и силами упругости, остается неизменной. (Сумма кинетической и потенциальной энергии тел называется полной механической энергией)
Mdt = d(Jω) или Mdt = dL
Где: Mdt – импульс момента силы (произведение момента силы М на промежуток времени dt)
Jdω = d(Jω) – изменение момента импульса тела,
Jω = L - момент импульса тела есть произведение момента инерции J на угловую скоростьω ω, а d(Jω) есть dL.
2. Кинематические характеристики Вращение твердого тела, как целого характеризуется углом φ, измеряющегося в угловых градусах или радианах, угловой скоростью
ω = dφ/dt (измеряется в рад/с)
и угловым ускорением
ε = d²φ/dt² (измеряется в рад/с²).
При равномерном вращении (T оборотов в секунду), Частота вращения — число оборотов тела в единицу времени:
f = 1/T = ω/2
Период вращения — время одного полного оборота. Период вращения T и его частота f связаны соотношением
T = 1/f
Линейная скорость точки, находящейся на расстоянии R от оси вращения
Угловая скорость вращения тела
ω = f/Dt = 2/T
Динамические характеристики Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергии вращения можно записать в виде:
E=
В этой формуле момент инерции играет роль массы, а угловая скорость роль обычной скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы:
Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:
=∑
где: mi — масса i-й точки, ri — расстояние от i-й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.
3. Маятник представляет собой замкнутую систему.
Если маятник находится в крайней точке, его потенциальная энергия максимальна, а кинетическая равна нулю.
Как только маятник начинает двигаться, егопотенциальная энергия уменьшается, а кинетическая - увеличивается.
В нижней точке кинетическая энергия максимальна, а потенциальная - минимальна. После этого начинается обратный процесс. Накопленная кинетическая энергия двигает маятник вверх и увеличивает, тем самым потенциальную энергию маятника. Кинетическая энергия уменьшается, пока маятник снова не остановится уже в другой крайней точке.
Можно сказать, что в процессе движения маятника происходит переход потенциальной энергии в кинетическую и наоборот.
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной.
Или так: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и силами упругости, остается неизменной.
(Сумма кинетической и потенциальной энергии тел называется полной механической энергией)