Тема. Решение задач по теме "Интерференция в тонких пластинках. Кольца Ньютона".
Цели:
- рассмотреть условия максимума и минимума интерференции в тонких плоскопараллельных и клиновидных пластинках,
- рассмотреть условия получения колец Ньютона, определение радиуса колец.
Ход занятия.
В ходе проведения занятия необходимо рассмотреть ряд качественных задач и далее решить несколько расчетных задач по мере возрастания их сложности.
Перед решением задач необходимо повторить основные условия, при которых наблюдается интерференция: когерентность волн, длина когерентности, условия максимума и минимума интерференции.
Обратите внимание на метод получения когерентных волн в рассматриваемых задачах - метод деления амплитуды.
Несколько задач предлагается с объяснением их решения. В задачах рассмотрено получение полос равного наклона (плоскопараллельная пластинка) и равной толщины (оптический клин и кольца Ньютона). Получены условия максимума и минимума интерференции в проходящем и отраженном свете.
Качественные задачи.
1. Если на влажный асфальт упадет капля бензина, то получившееся пятно в солнечном свете окрашивается в различные цвета. Объясните явление/.
2. Если поверхность оптического стекла покрыть прозрачной пленкой, показатель преломления которой меньше показателя преломления стекла, а толщина пленки равна (λ-длина волны падающего света), то поверхность стекла вовсе не будет отражать свет, то есть весь свет будет проходить через стекло. Объясните смысл такого приема объективов современных оптических приборов.
3. Выдувая мыльный пузырь и наблюдая за ним в отраженном свете, можно заметить на его поверхности радужные цвета. Объясните это явление.
Примеры решения расчетных задач
Задача 1. Пленка с показателем преломления n = 1,5 освещается светом с длиной волны λ=6 ·10-5 см. Световые волны рас по нормали к поверхности пленки. При каких толщинах d пленки интерференционные полосы, наблюдаемые на ее поверхности, исчезают?
Из падающей по нормали на поверхность пленки волны после отражения образуются две когерентные волны 1 и 2 ( рис . 1 ). Оптическая разность хода между ними с учетом потери в точке С равна . Для светлых полос Δ = k λ, то есть .
Минимальная толщина пленки, при которой наблюдаются светлые полосы в отраженном свете на поверхности пленки, соответствует k = 0, следовательно,. Если , полосы исчезают . Таким образом,
Различные действия тока, такие, как нагревание проводника, магнитные и химические действия, зависят от силы тока. Изменяя силу тока в цепи, можно регулировать эти действия. Но чтобы управлять током в цепи, надо знать, от чего зависит сила тока в ней.
Мы знаем, что электрический ток в цепи — это упорядоченное движение заряженных частиц в электрическом поле. Чем сильнее действие электрического поля на эти частицы, тем, очевидно, и больше сила тока в цепи.
Но действие поля характеризуется физической величиной — напряжением. Поэтому можно предположить, что сила тока зависит от напряжения. Эту зависимость можно установить на опыте.
изображена электрическая цепь, состоящая из источника тока — аккумулятора, амперметра, спирали из никелиновой проволоки, ключа и параллельно присоединенного к спирали вольтметра.
Замыкают цепь и отмечают показания приборов. Затем присоединяют к первому аккумулятору второй такой же аккумулятор и снова замыкают цепь. Напряжение на спирали при этом увеличится вдвое, и амперметр покажет вдвое большую силу тока. При трех аккумуляторах напряжение на спирали увеличивается втрое, во столько же раз увеличивается сила тока.
Таким образом, опыт показывает, что, во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нем. Другими словами, сила тока в проводнике прямо пропорциональна напряжению на концах проводника.
Практическое занятие № 2
Тема. Решение задач по теме "Интерференция в тонких пластинках. Кольца Ньютона".
Цели:
- рассмотреть условия максимума и минимума интерференции в тонких плоскопараллельных и клиновидных пластинках,
- рассмотреть условия получения колец Ньютона, определение радиуса колец.
Ход занятия.
В ходе проведения занятия необходимо рассмотреть ряд качественных задач и далее решить несколько расчетных задач по мере возрастания их сложности.
Перед решением задач необходимо повторить основные условия, при которых наблюдается интерференция: когерентность волн, длина когерентности, условия максимума и минимума интерференции.
Обратите внимание на метод получения когерентных волн в рассматриваемых задачах - метод деления амплитуды.
Несколько задач предлагается с объяснением их решения. В задачах рассмотрено получение полос равного наклона (плоскопараллельная пластинка) и равной толщины (оптический клин и кольца Ньютона). Получены условия максимума и минимума интерференции в проходящем и отраженном свете.
Качественные задачи.
1. Если на влажный асфальт упадет капля бензина, то получившееся пятно в солнечном свете окрашивается в различные цвета. Объясните явление/.
2. Если поверхность оптического стекла покрыть прозрачной пленкой, показатель преломления которой меньше показателя преломления стекла, а толщина пленки равна (λ-длина волны падающего света), то поверхность стекла вовсе не будет отражать свет, то есть весь свет будет проходить через стекло. Объясните смысл такого приема объективов современных оптических приборов.
3. Выдувая мыльный пузырь и наблюдая за ним в отраженном свете, можно заметить на его поверхности радужные цвета. Объясните это явление.
Примеры решения расчетных задач
Задача 1. Пленка с показателем преломления n = 1,5 освещается светом с длиной волны λ=6 ·10-5 см. Световые волны рас по нормали к поверхности пленки. При каких толщинах d пленки интерференционные полосы, наблюдаемые на ее поверхности, исчезают?
Из падающей по нормали на поверхность пленки волны после отражения образуются две когерентные волны 1 и 2 ( рис . 1 ). Оптическая разность хода между ними с учетом потери в точке С равна . Для светлых полос Δ = k λ, то есть .
Минимальная толщина пленки, при которой наблюдаются светлые полосы в отраженном свете на поверхности пленки, соответствует k = 0, следовательно,. Если , полосы исчезают . Таким образом,
м = 10-4 мм.
ответ: м = 10-4 мм.
Объяснение:
Надеюсь это тебе решить задачу
Различные действия тока, такие, как нагревание проводника, магнитные и химические действия, зависят от силы тока. Изменяя силу тока в цепи, можно регулировать эти действия. Но чтобы управлять током в цепи, надо знать, от чего зависит сила тока в ней.
Мы знаем, что электрический ток в цепи — это упорядоченное движение заряженных частиц в электрическом поле. Чем сильнее действие электрического поля на эти частицы, тем, очевидно, и больше сила тока в цепи.
Но действие поля характеризуется физической величиной — напряжением. Поэтому можно предположить, что сила тока зависит от напряжения. Эту зависимость можно установить на опыте.
изображена электрическая цепь, состоящая из источника тока — аккумулятора, амперметра, спирали из никелиновой проволоки, ключа и параллельно присоединенного к спирали вольтметра.
Замыкают цепь и отмечают показания приборов. Затем присоединяют к первому аккумулятору второй такой же аккумулятор и снова замыкают цепь. Напряжение на спирали при этом увеличится вдвое, и амперметр покажет вдвое большую силу тока. При трех аккумуляторах напряжение на спирали увеличивается втрое, во столько же раз увеличивается сила тока.
Таким образом, опыт показывает, что, во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нем. Другими словами, сила тока в проводнике прямо пропорциональна напряжению на концах проводника.