Для описания этих изменений вводят функцию состояния - внутреннюю энергию U и две функции перехода - теплоту Q и работу A. Математическая формулировка первого закона:
dU = Q - A (дифференциальная форма) (2.1)
U = Q - A (интегральная форма) (2.2)
Буква в уравнении (2.1) отражает тот факт, что Q и A - функции перехода и их бесконечно малое изменение не является полным дифференциалом.
В уравнениях (2.1) и (2.2) знаки теплоты и работы выбраны следующим образом. Теплота считается положительной, если она передается системе. Напротив, работа считается положительной, если она совершается системой над окружающей средой.
Существуют разные виды работы: механическая, электрическая, магнитная, поверхностная и др. Бесконечно малую работу любого вида можно представить как произведение обобщенной силы на приращение обобщенной координаты, например:
Aмех = p. dV; Aэл = . dе; Aпов = . dW (2.3)
( - электрический потенциал, e - заряд, - поверхностное натяжение, W - площадь поверхности). С учетом (2.3), дифференциальное выражение первого закона можно представить в виде:
dU = Q - p. dV Aнемех (2.4)
В дальнейшем изложении немеханическими видами работы мы будем, по умолчанию, пренебрегать.
Механическую работу, производимую при расширении против внешнего давления pex, рассчитывают по формуле:
A = (2.5)
Если процесс расширения обратим, то внешнее давление отличается от давления системы (например, газа) на бесконечно малую величину: pex = pin - dp и в формулу (2.5) можно подставлять давление самой системы, которое определяется по уравнению состояния.
Проще всего рассчитывать работу, совершаемую идеальным газом, для которого известно уравнение состояния p = nRT / V (табл. 1).
Sigma=Q/L - поверхностная плотность заряда E = sigma/(2*pi*R*eo) - напряженность создаваемая равномерно заряженной нитью E = Q/(L*2*pi*R*eo) F=E*q=Q*q/(L*2*pi*R*eo) = 2*Q*e/(L*2*pi*R*eo) = Q*e/(L*pi*R*eo) 1) На каком расстоянии от нити находится пылинка R = Q*e/(L*pi*F*eo) = =(3*10^-8)*(1,6*10^-19)/(1,50*pi*4*10^-15*(8,854*10^-12)) м = 0,02876 м ~ 29 мм 2) На сколько изменится энергия пылинки потенциал нити u1 =-2*Q/(L*e0)*ln(R1) u2 =-2*Q/(L*e0)*ln(R2) W1=q*u1 W2=q*u2 delta W = W2-W1= q*(u2-u1)= =-2*e(-2*Q/(L*e0)*ln(R2)+2*Q/(L*e0)*ln(R1)) = =2*e*(2*Q/(L*e0)*ln(R2)-2*Q/(L*e0)*ln(R1)) = =4*e*Q/(L*e0)*(ln(R2)-ln(R1)) = =4*e*Q/(L*e0)*(ln(2*R1)-ln(R1)) = =4*e*Q/(L*e0)*ln(2) = =4*(1,6*10^-19)*(3*10^-8)/(1,5*(8,854*10^-12))*ln(2) Дж = 1,0021E-15 Дж
Для описания этих изменений вводят функцию состояния - внутреннюю энергию U и две функции перехода - теплоту Q и работу A. Математическая формулировка первого закона:
dU = Q - A (дифференциальная форма) (2.1)
U = Q - A (интегральная форма) (2.2)
Буква в уравнении (2.1) отражает тот факт, что Q и A - функции перехода и их бесконечно малое изменение не является полным дифференциалом.
В уравнениях (2.1) и (2.2) знаки теплоты и работы выбраны следующим образом. Теплота считается положительной, если она передается системе. Напротив, работа считается положительной, если она совершается системой над окружающей средой.
Существуют разные виды работы: механическая, электрическая, магнитная, поверхностная и др. Бесконечно малую работу любого вида можно представить как произведение обобщенной силы на приращение обобщенной координаты, например:
Aмех = p. dV; Aэл = . dе; Aпов = . dW (2.3)
( - электрический потенциал, e - заряд, - поверхностное натяжение, W - площадь поверхности). С учетом (2.3), дифференциальное выражение первого закона можно представить в виде:
dU = Q - p. dV Aнемех (2.4)
В дальнейшем изложении немеханическими видами работы мы будем, по умолчанию, пренебрегать.
Механическую работу, производимую при расширении против внешнего давления pex, рассчитывают по формуле:
A = (2.5)
Если процесс расширения обратим, то внешнее давление отличается от давления системы (например, газа) на бесконечно малую величину: pex = pin - dp и в формулу (2.5) можно подставлять давление самой системы, которое определяется по уравнению состояния.
Проще всего рассчитывать работу, совершаемую идеальным газом, для которого известно уравнение состояния p = nRT / V (табл. 1).
E = sigma/(2*pi*R*eo) - напряженность создаваемая равномерно заряженной нитью
E = Q/(L*2*pi*R*eo)
F=E*q=Q*q/(L*2*pi*R*eo) = 2*Q*e/(L*2*pi*R*eo) = Q*e/(L*pi*R*eo)
1) На каком расстоянии от нити находится пылинка
R = Q*e/(L*pi*F*eo) =
=(3*10^-8)*(1,6*10^-19)/(1,50*pi*4*10^-15*(8,854*10^-12)) м = 0,02876 м ~ 29 мм
2) На сколько изменится энергия пылинки
потенциал нити
u1 =-2*Q/(L*e0)*ln(R1)
u2 =-2*Q/(L*e0)*ln(R2)
W1=q*u1
W2=q*u2
delta W = W2-W1= q*(u2-u1)=
=-2*e(-2*Q/(L*e0)*ln(R2)+2*Q/(L*e0)*ln(R1)) =
=2*e*(2*Q/(L*e0)*ln(R2)-2*Q/(L*e0)*ln(R1)) =
=4*e*Q/(L*e0)*(ln(R2)-ln(R1)) =
=4*e*Q/(L*e0)*(ln(2*R1)-ln(R1)) =
=4*e*Q/(L*e0)*ln(2) =
=4*(1,6*10^-19)*(3*10^-8)/(1,5*(8,854*10^-12))*ln(2) Дж = 1,0021E-15 Дж