гидравлический подъёмник, заполненный маслом, имеет два массивных поршня, находящиеся на одной высоте (см. рис. 10.1). площадь левого поршня 1 = 400 см2, его масса 1 = 3 кг, а площадь правого 2 = 100 см2. определите массу 2 правого поршня. на какую высоту и в какую сторону сместится относительно начального положения правый поршень, если на оба поршня поставить груз с массой, равной 2? плотность масла равна 900 кг/м3. трением между поршнями и стенками пренебречь.
m2 = 80кг
n = 6
f = 6/60 = 0.1 об/с — частота вращения платформы
ω = 2πf = 2π*0.1 рад/с — угловая частота вращения её.
Момент инерции однородного диска равен
I1 = m1 * R^2 / 2, где R — радиус диска (платформы)
По условию задачи, видимо, предполагается, что человек стоит на краю платформы, которая уже вращается с указанной частотой.
Момент инерции человека относительно той же оси равен I2 = m2 * R^2
Суммарный момент импульса системы относительно точки вращения равен
L = (I1 + I2)*ω
По условию задачи - человек переходит с края в центр, при этом предполагается, что на систему уже не действуют внешние силы или их момент равен нулю относительно точки / оси вращения, тогда момент импульса сохраняется.
Момент импульса системы после перехода человека в центр равен уравнению L = I1*ω1
(и вклад человека в момент импульса теперь равен 0)
Приравнивая, находим новую частоту вращения платформы с человеком:
ω1 = ω * (I1 + I2) / I1= ω * (m1 / 2 + m2) / (m1 / 2) = ω * (1 + 2*m2/m1)
или ω1 = 2π*0,1 * (1 + 2*80/120) = 2π * 7/30 рад/с
поэтому f1 = ω1/(2π) = 7/30 об/с
или 14 оборотов в минуту