На трубу действует 3 силы: F1 - реакция опоры со стороны 1 человека, направлена вверх F2 - реакция опоры со стороны 2 человека, направлена вверх gm - сила тяжести, направлена вниз Задача на условие равновесия, их два 1) равнодействующая всех сил приложенных к телу должна равняться нулю, т. е. F1 + F2 = gm (1) 2) алгебраическая сумма моментов си относительно выбранной оси вращения также должна равняться нулю Выберем ось вращения совпадающую с точкой приложения силы F1, тогда имеем 0,25*gm = F2*1,5 (2) Делим первое уравнение на второе: 1/0,25 = F1/(F2*1,5) + F2/(F2*1,5) 4 = F1/(F2*1,5) + 1/1,5 4 = 2/3 * F1/F2 + 2/3 4 - 2/3 = 2/3 * F1/F2 F1/F2 = 9/3 : 2/3 = 4,5
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
F1 - реакция опоры со стороны 1 человека, направлена вверх
F2 - реакция опоры со стороны 2 человека, направлена вверх
gm - сила тяжести, направлена вниз
Задача на условие равновесия, их два
1) равнодействующая всех сил приложенных к телу должна равняться нулю, т. е. F1 + F2 = gm (1)
2) алгебраическая сумма моментов си относительно выбранной оси вращения также должна равняться нулю
Выберем ось вращения совпадающую с точкой приложения силы F1, тогда имеем 0,25*gm = F2*1,5 (2)
Делим первое уравнение на второе:
1/0,25 = F1/(F2*1,5) + F2/(F2*1,5)
4 = F1/(F2*1,5) + 1/1,5
4 = 2/3 * F1/F2 + 2/3
4 - 2/3 = 2/3 * F1/F2
F1/F2 = 9/3 : 2/3 = 4,5
Среднюю скорость катера можно сосчитать по формуле:
\[{\upsilon _{ср}} = \frac{{{S_1} + {S_2}}}{{{t_1} + {t_2}}}\]
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
\[\left\{ \begin{gathered}
{t_1} = \frac{S}{{2{\upsilon _1}}} = \frac{S}{{4{\upsilon _2}}} \hfill \\
{t_2} = \frac{S}{{2{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Подставим выражения для времен \(t_1\) и \(t_2\) в формулу средней скорости.
\[{\upsilon _{ср}} = \frac{S}{{\frac{S}{{4{\upsilon _2}}} + \frac{S}{{2{\upsilon _2 = \frac{S}{{\frac{{3S}}{{4{\upsilon _2 = \frac{{S \cdot 4{\upsilon _2}}}{{3S}} = \frac{{4{\upsilon _2}}}{3}\]
Значит необходимая нам скорость \(\upsilon_2\) определяется по такой формуле.