Хлопчик масою 40 кг переходить з носа човна, який знаходиться в озері, на корму з швидкістю 0.5 м/с відносно човна. з якими швидкостями рухаються при цьому човен і хлопчик відносно води, якщо маса човна 160 кг ? дайте ответ расписано , нужно.
1. Это векторная физическая величина, характеризующая вращательное действие силы на твёрдое тело 2.На крестообразный маятник при его вращении действуют моменты сил, создаваемые силой натяжения и силой трения в оси маятника. 3. Тут несколько вариантов. Моментом инерции твердого тела относительно оси называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до оси. Моментом инерции твёрдого тела относительно плоскости называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояний от этой точки до плоскости. Моментом инерции твёрдого тела относительно полюса (полярным моментом инерции) называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от точки до этого полюса. 4.Момент инерции J тела относительно произвольной неподвижной оси равен сумме момента инерции этого тела Jc относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями: 5.Маятник совершает вращательное движение, которое можно описать уравнением Iβ = M, где М - результирующий момент сил относительно оси вращения, действующих на маятник. Кратко не получилось)
Для всех трех задач вспомним, что радиус-вектор представляет собой гипотенузу прямоугольного треугольника, а его проекции на оси координат -- катеты этот треугольника.
1) Известна гипотенуза и один из катетов, другой катет ищем по теореме Пифагора:
y = sqrt(5²-2,5²) м = 4,33 м
2) Известна гипотенуза и один из углов треугольника. Следовательно,
xA = rA * cos α = 5 м * cos 60° = 5 м * 1/2 = 2,5 м yA = rA * sin α = 5 м * sin 60° = 5 м * sqrt(3) / 2 = 4,33 м
Складываем проекции вектора с проекциями радиус-вектора B относительно A:
xB = xA + xAB = 2,5 м + 1,83 м = 4,33 м yB = yA + yAB = 4,33 м + 0 = 4,33 м
Радиус-вектор вычисляем через теорему Пифагора:
rB = sqrt(4,33² + 4,33²) м = sqrt(150/4) = 5/2 * sqrt(6) = 6,12 м
Поскольку xB = yB, то угол между вектором rB и осью Ox составляет 45°.
3) Известны оба катета треугольника, гипотенузу находим по теореме Пифагора:
r = sqrt(3² + 5,2²) м = 6 м
Чтобы вычислить угол с осью Ox, используем либо арксинус, либо арккосинус. В данном случае удобнее использовать арккосинус:
2.На крестообразный маятник при его вращении действуют моменты сил, создаваемые силой натяжения и силой трения в оси маятника.
3. Тут несколько вариантов.
Моментом инерции твердого тела относительно оси называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до оси.
Моментом инерции твёрдого тела относительно плоскости называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояний от этой точки до плоскости.
Моментом инерции твёрдого тела относительно полюса (полярным моментом инерции) называется скалярная величина, равная сумме произведений массы каждой точки тела на квадрат расстояния от точки до этого полюса.
4.Момент инерции J тела относительно произвольной неподвижной оси равен сумме момента инерции этого тела Jc относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями:
5.Маятник совершает вращательное движение, которое можно описать уравнением
Iβ = M,
где М - результирующий момент сил относительно оси вращения, действующих на маятник. Кратко не получилось)
1) Известна гипотенуза и один из катетов, другой катет ищем по теореме Пифагора:
y = sqrt(5²-2,5²) м = 4,33 м
2) Известна гипотенуза и один из углов треугольника. Следовательно,
xA = rA * cos α = 5 м * cos 60° = 5 м * 1/2 = 2,5 м
yA = rA * sin α = 5 м * sin 60° = 5 м * sqrt(3) / 2 = 4,33 м
Складываем проекции вектора с проекциями радиус-вектора B относительно A:
xB = xA + xAB = 2,5 м + 1,83 м = 4,33 м
yB = yA + yAB = 4,33 м + 0 = 4,33 м
Радиус-вектор вычисляем через теорему Пифагора:
rB = sqrt(4,33² + 4,33²) м = sqrt(150/4) = 5/2 * sqrt(6) = 6,12 м
Поскольку xB = yB, то угол между вектором rB и осью Ox составляет 45°.
3) Известны оба катета треугольника, гипотенузу находим по теореме Пифагора:
r = sqrt(3² + 5,2²) м = 6 м
Чтобы вычислить угол с осью Ox, используем либо арксинус, либо арккосинус. В данном случае удобнее использовать арккосинус:
α = arccos 3/6 = arccos 1/2 = 60°.