В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
edemka17042006
edemka17042006
29.10.2022 02:11 •  Физика

Идеальный газ в кол-ве 1моль находится в вертикальном цилиндре под легко скользящим поршнем. Площадь поперечного сечения поршня равна 100см2. При нагревании газа на 58С поршень поднимается на 40см. Чему равна масса поршня? Атмосферное давление считать нормальным.

Показать ответ
Ответ:
Maksikar
Maksikar
19.08.2020 16:36
Пусть при прохождении точки π/2 шарик будет иметь скорость V2.

Заметим, что при прохождении точки π/2 шарик должен иметь неотличимое натяжение нити, иначе она согнется и полный оборот не получится.

Тогда по второму закону Ньютона имеем: mg = ma, т.е. a = g

Центростремительное ускорение шарика в точке π/2: g = V2^2 / R => V2^2 = g R

Теперь прибегнем к закону сохранения энергии (в точке -π/2 и π/2). Получаем (V1 -  начальная скорость шарика, которую мы ищем):

mV1^2 / 2 = mV2^2/2 + mg2R

mV1^2 / 2 = (mgR + 4mgR) / 2

mV1^2 = 5mgR

V1 = √5gR
0,0(0 оценок)
Ответ:
milton555
milton555
06.02.2021 21:17
Дано:
m_{1}=1 кг
l=0,9 м
\alpha =39°
m_{2}=0,01 кг
v_{2}=300 м/с
v_{2}'=200 м/с

Найти:
\beta - ?

Решение:

1) Изначально шар находится на некоторой высоте h1 с длиной нити l. Затем его опускают и в положении дальнейшего соударения с пулей шар имеет скорость V1. Запишем закон сохранения энергии:

m_{1}g h_{1}= \frac{ m_{1} v_{1}в }{2}

Сокращаем m1. Рассмотрим cosα:

cos \alpha = \frac{l- h_{1} }{l}


Откуда выводим h1:

h_{1}=l(1- cos \alpha )

Выводим из ЗСЭ V1, подставляя формулу для h1:

v_{1}= \sqrt{2gl(1-cos \alpha )}

2) Закон сохранения импульса по горизонтали для пули и шара, спроецированный на некоторую ось ОХ, направленную в сторону движения пули, имеет вид:

m_{2} v_{2}- m_{1} v_{1}= m_{2} v_{2}'- m_{1} v_{1}',

где V1' - скорость шара после соударения с пулей. Выведем ее:

v_{1}'= \sqrt{2gl(1-cos \alpha )}- \frac{ m_{2}( v_{2}- v_{2}') }{ m_{1} } \\ \\ 
 v_{1}'= \sqrt{20*0,9*0,5}- \frac{0,01*100}{1}=3-1=2

3) Закон сохранения энергии для шара после соударения с пулей:

\frac{ m_{1} v_{1}'в }{2}= m_{1}g h_{2}

При этом h2 аналогично h1 равен:

h_{2} =l(1-cos \beta )

Перепишем ЗСЭ в виде:

v_{1}'в=2gl-2glcos \beta

Откуда cosβ:

cos \beta =1- \frac{ v_{1}'в }{2gl} =1- \frac{4}{18} = \frac{14}{18}= \frac{7}{9}=39°
0,0(0 оценок)
Популярные вопросы: Физика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота