Имеются три шара с массами m1, μ и m2 . шар m2 движется по горизонтальной плоскости, остальные шары покоятся (см. рисунок). происходят центральные столкновения шаров. при каком значении массы μ шар массой m1 будет иметь после одного столкновения с шаром μ максимальную скорость? ответ в килограммах округлить до сотых по правилам округления и вписать в поле ответа. трения между шарами и плоскостью нет. m1=1.75 кг m2=0.25 кг
Пробное тело μ может располагаться с одной стороны от тел 1 и 2, и тогда решение тривиально - тело 2 бьёт по телу 1, после чего тело 1 ударяется о пробный груз μ. Понятно, что максимум скорости тела 1 получится при нулевой массе μ, когда пробному телу будет передан минимум энергии от тела 1. Вероятнее всего задача нормальная, не подразумевающая тривиальных ответов.
Пусть тело μ между m₂ и m₁
1. соударение между движущимся m₂ и неподвижным μ
Закон сохранения импульса
m₂v₂ = m₂v₂' + μv'
Энергии
m₂v₂²/2 = m₂v₂'²/2 + μv'²/2
Со штрихом - скорости после столкновения
m₂(v₂-v₂') = μv'
m₂(v₂² - v₂'²) = μv'²
m₂(v₂² - v₂'²) = m₂(v₂-v₂')*m₂(v₂-v₂')/μ
μ(v₂ + v₂') = m₂(v₂-v₂')
μv₂ + μv₂' = m₂v₂ - m₂v₂'
(μ+m₂)v₂'=(m₂-μ)v₂
v₂'=v₂(m₂-μ)/(μ+m₂)
m₂(v₂-v₂(m₂-μ)/(μ+m₂)) = μv'
m₂v₂(1-(m₂-μ)/(μ+m₂)) = μv'
m₂v₂(μ+m₂-m₂+μ))/(μ+m₂) = μv'
2m₂v₂μ/(μ+m₂) = μv'
2m₂v₂/(μ+m₂) = v'
v' = v₂ * 2m₂/(μ+m₂)
Аналогично и для второго соударения, между движущимся телом μ неподвижным m₁
v₁' = v' * 2μ/(μ+m₁)
v₁' = v₂ * 2m₂/(μ+m₂) * 2μ/(μ+m₁)
Попробуем взять производную по μ и приравнять её к нулю, для поиска максимума скорости
Производная сложной функции
в нашем сучае она равна нулю. Знаменатель всегда положителен, т.к. массы неотрицательны. Остаётся приравнять нулю числитель
(+m₂)μ(μ+m₁)-μ(2μ+m₂+m₁) = 0
μ^2+μ(m₂+m₁)+m₂-2μ^2-μ(m₂+m₁)=0
μ^2 = m₂*m₁
Получается, что для максимальной скорости массы М1 после удара масса среднего тела должна быть средним геометрическим от масс крайних тел
Или в числах
μ = sqrt(0.25*1.75) = sqrt(0.4375) = 0,6614 кг, с округлением до сотых 0,66 кг