Из уравнения теплового баланса:
Тепло, получаемое льдом идет на нагрев льда до 0оС и плавление льда:
Q1 = c1*m1*(0-(-20))+L1*m1
m1,c1,L1 - соответственно масса, удельная теплоемкость и удельная теплота плавления льда.
Тепло отдаваемое паром состоит из теплоты конденсации и тепла, отданного при остывании горячей воды до 0оС:
Q2= r2*m2+c2*m2*(100-0)
m2,r2,c2 - соответственно масса и удельная теплота кипения (конденсации) пара, а также удельная теплоемкость воды.
Q1 = Q2
c1*m1*20+L1*m1 = r2*m2+c2*m2*100
m1= (r2*m2+c2*m2*100) / (c1*20+L1)
N - мощность горелки,
t - искомое время,
Q - затраченное количество теплоты.
Разберемся поэтапно с Q.
На что наша горелка будет затрачивать энергию?
- плавление льда: λ m(л)
- нагрев образовавшейся воды до температуры кипения от начальной - нуля: c m(л) (100 - 0) = 100 c m(л)
- нагрев воды, которая уже находилась в сосуде: c m(в) (100 - 0) = 100 с m(в)
Таким образом, Q = λ m(л) + 100 c m(л) + 100 с m(в).
Запишем найденную формулу Q в формулу мощности:
N = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / t,
откуда искомое время t:
t = ( λ m(л) + 100 c m(л) + 100 с m(в) ) / N.
Упростим выражение (выносим сотню и удельную теплоемкость воды за скобки):
t = ( λ m(л) + 100 c (m(л) + m(в)) ) / N,
t = ( 335*10^3 * 35*10^-2 + 10^2 * 42*10^2 * 9*10^-1) / 1,5*10^3,
t = (117250 + 378000) / 1,5*10^3,
t = (117,25 + 378) / 1,5 ≈ 330,16 c ≈ 5,5 мин
Из уравнения теплового баланса:
Тепло, получаемое льдом идет на нагрев льда до 0оС и плавление льда:
Q1 = c1*m1*(0-(-20))+L1*m1
m1,c1,L1 - соответственно масса, удельная теплоемкость и удельная теплота плавления льда.
Тепло отдаваемое паром состоит из теплоты конденсации и тепла, отданного при остывании горячей воды до 0оС:
Q2= r2*m2+c2*m2*(100-0)
m2,r2,c2 - соответственно масса и удельная теплота кипения (конденсации) пара, а также удельная теплоемкость воды.
Q1 = Q2
c1*m1*20+L1*m1 = r2*m2+c2*m2*100
m1= (r2*m2+c2*m2*100) / (c1*20+L1)