1,4
Объяснение:
Плотность алюминия ρ_a = 2,7 · 10³ кг/м³, плотность меди ρ_м = 8.9 · 10³ кг/м³.
Дано:
V_а = V_м = V,
ρ_a = 2,7 · 10³ кг/м³
M_а = 27 · 10⁻³ кг/моль
ρ_м = 8.9 · 10³ кг/м³
M_м = 64 · 10⁻³ кг/моль
N_м/N_a - ?
Число частиц вещества, содержащегося в некотором его объёме, определим по формуле:
N=m/m₀, где m — масса всех частиц вещества (m=ρV), m₀ — масса одной частицы m₀ = M/N_a
Для сравнения числа частиц вещества в алюминиевом и медном кубиках одинакового объёма выведем соотношение:
N_м/N_a = (ρ_м · M_а)/ρ_a · M_м)
N_м/N_a = (8.9 · 10³ кг/м³ · 27 · 10⁻³ кг/моль)/(2,7 · 10³ кг/м³ · 64 · 10⁻³ кг/моль) = 1,4
1,4
Объяснение:
Плотность алюминия ρ_a = 2,7 · 10³ кг/м³, плотность меди ρ_м = 8.9 · 10³ кг/м³.
Дано:
V_а = V_м = V,
ρ_a = 2,7 · 10³ кг/м³
M_а = 27 · 10⁻³ кг/моль
ρ_м = 8.9 · 10³ кг/м³
M_м = 64 · 10⁻³ кг/моль
N_м/N_a - ?
Число частиц вещества, содержащегося в некотором его объёме, определим по формуле:
N=m/m₀, где m — масса всех частиц вещества (m=ρV), m₀ — масса одной частицы m₀ = M/N_a
Для сравнения числа частиц вещества в алюминиевом и медном кубиках одинакового объёма выведем соотношение:
N_м/N_a = (ρ_м · M_а)/ρ_a · M_м)
N_м/N_a = (8.9 · 10³ кг/м³ · 27 · 10⁻³ кг/моль)/(2,7 · 10³ кг/м³ · 64 · 10⁻³ кг/моль) = 1,4
x = x0 + V0x t + g(x) t^2 / 2,
l = 0 + V0 cosα t + 0,
l = V0 cosα t.
Нам неизвестна начальная скорость. Найдем ее, чтобы далее выразить время.
2) По закону сохранения энергии для положения тела сначала на башне, а затем - на максимальной высоте подъема H:
m V0^2 / 2 + m g h = m g H.
Нам неизвестна максимальная высота подъема H. Выразим ее.
3) S(y) = H = (Vy^2 - V0y^2) / - 2g(y),
H = V0^2 sin^2 α / 2g.
Возвращаемся к ЗСЭ:
m V0^2 / 2 + m g h = mg V0^2 sin^2 α / 2g, откуда начальная скорость равна:
V0 = sqrt(2gh / cos^2 α).
Возвращаемся к первому действию:
l = sqrt(2gh / cos^2 α) cosα t, откуда t равняется:
t = l / sqrt(2gh / cos^2 α) cosα,
t = 65 / sqrt(200 / 0,5) * 0,707 = 4,596 c