Конечно, поставленный вопрос не корректен1. Потому, что энергия конденсатора зависит еще и от его заряда, причем во всех случаях прямо пропорционально квадрату заряда. Говорить же об изменении энергии конденсатора при изменении его емкости следует только при других заданных условиях: остается ли постоянным заряд конденсатора, остается ли неизменным напряжение на конденсаторе? Если изменение емкости происходит при неизменном заряде конденсатора (при этом изменяется его напряжение), то для расчета энергии следует использовать формулу W = q2/(2C), которая указывает, что увеличение емкости приводит к уменьшению энергии и, наоборот, уменьшение емкости приводит к увеличению энергии. Если же изменение емкости происходит при постоянном напряжении (например, когда конденсатор подключен к источнику постоянной ЭДС), то для расчета энергии и ее изменения нужно использовать выражение W = CU2/2. В этом случае увеличение емкости приводит к увеличению энергии.
Если изменение емкости происходит при неизменном заряде конденсатора (при этом изменяется его напряжение), то для расчета энергии следует использовать формулу W = q2/(2C), которая указывает, что увеличение емкости приводит к уменьшению энергии и, наоборот, уменьшение емкости приводит к увеличению энергии.
Если же изменение емкости происходит при постоянном напряжении (например, когда конденсатор подключен к источнику постоянной ЭДС), то для расчета энергии и ее изменения нужно использовать выражение W = CU2/2. В этом случае увеличение емкости приводит к увеличению энергии.
• по 3 закону Ньютона Fтяж = Fграв
○ Fтяж = mg
○ Fграв = (G m M)/R²
• приравняв, получаем g = (G M)/R² и, соответственно,
○ R = √((GM)/g)
• плотность равна p = M/V, где V - объем сферы (пусть наша звезда - шар с однородным распределением масс). тогда:
○ p = (3 M)/(4 π R³) = ((3M)/(4π)) * (g/(GM))^(3/2)
○ p = ((3*2*10^(30))/(4*3.14)) * (1508/(6.67*10^(-11)*2*10^(30)))^(3/2)
○ p = 18156.4057226 кг/м³ ≈ 1.8*10^(4) кг/м³