Движение тела по окружности является частным случаем криволинейного движения. Наряду с вектором перемещения  удобно рассматривать угловое перемещение Δφ (или угол поворота), измеряемое в радианах (рис. 1.6.1). Длина дуги связана с углом поворота соотношением Δl = R Δφ.
При малых углах поворота Δl ≈ Δs.
Если материальная точка M движется по окружности, то рассматривается угловая скорость и линейная скорость. Определение линейной скорости: линейная скорость - это производная от пройденного пути по времени.
Формула линейной скорости:
v = ds/dt
где s - путь, пройденный материальной точкой М по дуге окружности, начиная от точки X:
Путь s можно выразить через радиус окружности и его угол поворота:
s = rφ
Подставим это значение пути s в формулу линейной скорости:
v = ds/dt = d(rφ)/dt = r * dφ/dt
радиус окружности r является константой, поэтому мы вынесли его за знак производной.
Производная dφ/dt - это угловая скорость:
ω = dφ/dt
Учитывая это, получаем формулу линейной скорости при движении по окружности:
Δl = R Δφ.
При малых углах поворота Δl ≈ Δs.
Если материальная точка M движется по окружности, то рассматривается угловая скорость и линейная скорость. Определение линейной скорости: линейная скорость - это производная от пройденного пути по времени.
Формула линейной скорости:
v = ds/dt
где s - путь, пройденный материальной точкой М по дуге окружности, начиная от точки X:
Путь s можно выразить через радиус окружности и его угол поворота:
s = rφ
Подставим это значение пути s в формулу линейной скорости:
v = ds/dt = d(rφ)/dt = r * dφ/dt
радиус окружности r является константой, поэтому мы вынесли его за знак производной.
Производная dφ/dt - это угловая скорость:
ω = dφ/dt
Учитывая это, получаем формулу линейной скорости при движении по окружности:
v = ωr
C=205 нФ=205 10⁻⁹ Ф =1/6,28√9225 10⁻¹²=1/6,28*96,05 10⁻⁶=
f=120 кГц=12 10⁴ Гц =1/603,2 10⁻⁶=0,00166 10⁶=1,66 10³ Гц;
C=1/4π²f²L=1/4*9,8*144 10⁸*45 10⁻³=
f(LC)-? =1/63504 10⁻³=1,57 10²=157 Ф;
C-? L=1/4π²f²C=1/ 4*3,14*144 10⁸*205 10⁻⁹=
L-? =1/185385,6 10⁻⁹=5,4 10¹⁵Гн.