Задание не определенного характера. все дело в плотности звезды! если его считать сплошным телом сделанным из чистого железа, тогда можно. M - масса звезды V = 4*π*R³/3 - объем звезды, R = Rз/10 = 640 км = 6,4 *10⁵ м M = ρ*4*π*R³/3 = 4 * 7800 кг/м³ * 3,14 * (6,4*10⁵ м)³ / 3 ≈ 2,57*10²² кг вычислим ускорение свободного падения на поверхности звезды g = G*M/R² = 6,67*10⁻¹¹ Н*м²/кг² * 2,57*10²² кг / (6,4*10⁵ м)² ≈ 4,19 м/с² будем считать, что звездолет обращается вблизи поверхности звезды,т.е. не будем учитывать высоту полета над звездой. вычислим первую космическую скорость для звезды v₁ = корень(g*R) = корень(4,19 м/с² * 6,4*10⁵ м) ≈ 1,64*10³ м/с = 1,64 км/с длина окружности звезды L = 2*π*R => Δt = L / v₁ = 2*π*R / v₁ Δt = 2*3,14*640 км / 1,64 км/с ≈ 2435 с ≈ 40,6 мин
Запишем уравнение теплового баланса
Q1 + Q2 = Q3
где Q1 - количество теплоты поглощенное стальным чайником
Q2 - количество теплоты поглощенное водой
Q3 - количество теплоты отданное бруском
Тогда c1*m1 * (t2-t1) + c2*m2 * (t2-t1) = c3*m3 * (t3-t2)
Удельная теплоемкость стали 0,46 кДж/(кг*К), воды 4,18 кДж/(кг*К)
Тогда
0,46*1,2*(25-20) + 4,18*1,9*(25-20) = с3 * 0,65 (100-25)
Отсюда с3 = 0,87 кДж/(кг*К)
Данной удельная теплоемкость может соответствовать Глина у которой с = 0,88 кДж/(кг*К)
M - масса звезды
V = 4*π*R³/3 - объем звезды, R = Rз/10 = 640 км = 6,4 *10⁵ м
M = ρ*4*π*R³/3 = 4 * 7800 кг/м³ * 3,14 * (6,4*10⁵ м)³ / 3 ≈ 2,57*10²² кг
вычислим ускорение свободного падения на поверхности звезды
g = G*M/R² = 6,67*10⁻¹¹ Н*м²/кг² * 2,57*10²² кг / (6,4*10⁵ м)² ≈ 4,19 м/с²
будем считать, что звездолет обращается вблизи поверхности звезды,т.е. не будем учитывать высоту полета над звездой.
вычислим первую космическую скорость для звезды
v₁ = корень(g*R) = корень(4,19 м/с² * 6,4*10⁵ м) ≈ 1,64*10³ м/с = 1,64 км/с
длина окружности звезды L = 2*π*R => Δt = L / v₁ = 2*π*R / v₁
Δt = 2*3,14*640 км / 1,64 км/с ≈ 2435 с ≈ 40,6 мин